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Coefficient inverse problem in the wave equation

In a smooth bounded domain Ω ⊂ Rn, it writes for instance,
∂tty(t, x)−∆xy(t, x) + p(x)y(t, x) = f(t, x), (t, x) ∈ (0, T )× Ω,

y(t, x) = g(t, x), (t, x) ∈ (0, T )× ∂Ω

(y(0, x), ∂ty(0, x)) = (y0(x), y1(x)), x ∈ Ω.

or with variable speed
∂tty −∇ · (a(x)∇y) = f, in (0, T )× Ω,

y = g, on (0, T )× ∂Ω,

(y(0), ∂ty(0)) = (y0, 0), in Ω,

• Given data : Source terms f, g ; initial data : (y0, y1) ;

• Unknown : the potential p = p(x) or the speed a = a(x) ;

• Additional measurement : the flux ∂νy(t, x) on (0, T )× ∂Ω.
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Motivation

I The determination in Ω of p or a from an additional

measurement are inverse problems for which uniqueness and

stability are well-known and proved using Carleman estimates.

I Classical reconstruction method : minimizing

J(pk) = ‖∂νy[pk]− ∂νy[p]‖ or J(ak) = ‖∂νy[ak]− ∂νy[a]‖

generally not convex.  May have several local minima.

Algorithms not guaranteed to converge to the global minimum.

I Klibanov, Beilina and co-authors have worked a lot on related

questions...
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The Carleman-based reconstruction algorithm

• First goal : compute the PDE unknown coefficient with convergence

estimates and no a priori first guess.

• Core idea : build a reconstruction algorithm

I using the structure of the proof of stability

to prove the global convergence ;

I from the appropriate Carleman estimates

to build the cost functional.

• Until now, the idea was applied to three reconstruction cases :

I potential / wave speed in the wave equation ;

I source term in a non linear heat equation

by de Buhan, Schwindt & Boulakia.
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Determination of the potential in the wave equation
∂tty −∆y + py = f, (0, T )× Ω,

y = g, (0, T )× ∂Ω

(y(0), ∂ty(0)) = (y0, y1), Ω.

Is it possible to retrieve the potential p = p(x), x ∈ Ω from

measurement of the flux ∂νy(t, x) on (0, T )× ∂Ω ?

I Uniqueness : Given p1 6= p2, can we guarantee ∂νy[p1] 6= ∂νy[p2]?

I Stability : If ∂νy[p1] ' ∂νy[p2], can we guarantee that p1 ' p2 ?

I Reconstruction : Given ∂νy[p], can we compute p?

• Known results : Uniqueness (Klibanov ’92), stability (Yamamoto ’99,

Imanuvilov - Yamamoto ’01), using Carleman estimates.

• Main question : Reconstruction ; how to compute the potential from

the boundary measurement?



8 / 53

Stability Result (Yamamoto ’99, LB-Puel ’01)

Let x0 ∈ RN \ Ω and let Γ0 and T satisfy

{x ∈ ∂Ω, (x− x0) · ν(x) > 0} ⊂ Γ0 ; T > sup
x∈Ω
{|x− x0|}.

Let the potential p, the initial data y0 and the solution y[p] s.t.

‖p‖L∞(Ω) ≤ m, inf
x∈Ω
{|y0(x)|} ≥ γ > 0, y[p] ∈ H1(0, T ;L∞(Ω))

Then, one can prove uniqueness and local Lipschitz stability of

the inverse problem for the wave equation : ∀q ∈ L∞≤m(Ω),

1

C
‖p− q‖L2(Ω) ≤ ‖∂νy[p]− ∂νy[q]‖H1((0,T );L2(Γ0)) .
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Carleman estimate (LB, de Buhan, Ervedoza ’13)

Assuming q ∈ L∞≤m(Ω), Lq = ∂tt −∆x + q(x), ϕ(t, x) = eλ(|x−x0|2−βt2)

{x ∈ ∂Ω, (x− x0) · ν(x) > 0} ⊂ Γ0 , sup
x∈Ω
|x− x0| < βT

∃s0 > 0, λ > 0 and M = M(s0, λ, T, β, x0,m) > 0 such that

s

∫ T

0

∫
Ω
e2sϕ

(
|∂tw|2 + |∇w|2 + s2|w|2

)
dxdt + s1/2

∫
Ω
e2sϕ(0)|∂tw(0)|2 dx

≤ M

∫ T

0

∫
Ω
e2sϕ|Lqw|2 dxdt+Ms

∫ T

0

∫
Γ0

e2sϕ |∂νw|2 dσdt,

for all s > s0 and w ∈ L2(−T, T ;H1
0 (Ω)) satisfying

Lqw ∈ L2(Ω× (−T, T ))

∂νw ∈ L2((0, T )× Γ0),

w(0, x) = 0, ∀x ∈ Ω.

 but also Imanuvilov, Zhang, Klibanov,...
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Towards a (re)constructive approach

It is easy to check that Z = ∂t (y[p]− y[q]) satisfies
∂ttZ −∆xZ + q(x)Z = (q − p)∂ty[p], (t, x) ∈ (0, T )× Ω,

Z(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω

(Z(0, x), ∂tZ(0, x)) = (0, (q − p)y0), x ∈ Ω.

Main idea : source term (q − p)∂ty[p] less relevant than initial

data (q − p)y0, thanks to the Carleman estimate, whereas

∂νZ = ∂t∂νy[p]− ∂t∂νy[q] on (0, T )× Γ0 is known.

 Hence, we try to fit Z using this information
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Carleman based Reconstruction Algorithm
Initialization : q0 = 0 or any initial guess.

Iteration : Given qk,

1 - Compute w[qk] the solution of
∂2
tw −∆w + qkw = f, in Ω× (0, T ),

w = g, on ∂Ω× (0, T ),

w(0) = w0, ∂tw(0) = w1, in Ω,

and set µk = ∂t
(
∂νw[qk]− ∂νw[p]

)
on Γ0 × (0, T ).

2 - Introduce the functional

Jk0 (z) =

∫ T

0

∫
Ω
e2sϕ|Lqkz|2 + s

∫ T

0

∫
Γ0

e2sϕ|∂νz − µk|2,

on the space T k = {z ∈ L2(0, T ;H1
0 (Ω)), z(t = 0) = 0,

Lqkz ∈ L2(Ω× (0, T )), ∂νz ∈ L2(Γ0 × (0, T ))}.
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Theorem
Assume the geometric and time conditions. Then, for all

s > 0 and k ∈ N, the functional Jk0 is continuous, strictly convex

and coercive on T k endowed with a suitable weighted norm.

3 - Let Zk be the unique minimizer of the functional Jk0 , and

then set

q̃k+1 = qk +
∂tZ

k(0)

w0
⇔ (q̃k+1 − qk)w0 = ∂tZ

k(0),

where w0 is the initial condition.

4 - Finally, set

qk+1 = Tm(q̃k+1), where Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| ≥ m.
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Algorithm’s convergence (LB, de Buhan & Ervedoza 13’)

Theorem
Assuming the geometric and time conditions (among others),

there exists a constant M > 0 such that ∀s ≥ s0(m) and k ∈ N,∫
Ω
e2sϕ(0)(qk+1 −Q)2 dx ≤ M√

s

∫
Ω
e2sϕ(0)(qk −Q)2 dx.

In particular, when s is large enough, the algorithm converges.

Remark : This algorithm converges to the global minimum from

any initial guess.
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Proof
The algorithm is based on the Bukhgeim-Klibanov method and
uses vk = ∂t

(
y[qk]− y[p]

)
that solves

∂2
t v −∆v + qkv = hk, in Ω× (0, T ),

v = 0, on ∂Ω× (0, T ),

v(0) = 0, ∂tv(0) = (p− qk)y0, in Ω,

where hk = (p− qk)∂ty[p].

By definition, µk = ∂νv
k on Γ0 × (0, T ), and we notice that vk is

the unique minimizer of the functional :

Jkh (w) =

∫ T

0

∫
Ω
e2sϕ|Lqkw − hk|2 + s

∫ T

0

∫
Γ0

e2sϕ|∂νw − µk|2,

on the space T k = {w ∈ L2(0, T ;H1
0 (Ω)), w(t = 0) = 0,

Lqkw ∈ L2(Ω× (0, T )), ∂νw ∈ L2(Γ0 × (0, T ))}.
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Let us write the Euler Lagrange equations satisfied by :

Zk minimizer of Jk0∫ T

0

∫
Ω

e2sϕLqkZ
k Lqkw + s

∫ T

0

∫
Γ0

e2sϕ(∂νZ
k − µk)∂νw = 0,

and vk minimizer of Jkh∫ T

0

∫
Ω

e2sϕ(Lqkv
k − hk)Lqkw + s

∫ T

0

∫
Γ0

e2sϕ(∂νv
k − µk)∂νw = 0,

for all w ∈ T k. Applying these to w = Zk − vk and subtracting the two

identities, we obtain :∫ T

0

∫
Ω

e2sϕ|Lqkw|2 + s

∫ T

0

∫
Γ0

e2sϕ|∂νw|2 =

∫ T

0

∫
Ω

e2sϕhk Lqkw,

implying (2ab ≤ a2 + b2)

1

2

∫ T

0

∫
Ω

e2sϕ|Lqkw|2 + s

∫ T

0

∫
Γ0

e2sϕ|∂νw|2 ≤
1

2

∫ T

0

∫
Ω

e2sϕ|hk|2.
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The LHS is precisely the RHS of the Carleman estimate. Hence :

s1/2

∫
Ω

e2sϕ(0)|∂tw(0)|2 dx ≤M
∫ T

0

∫
Ω

e2sϕ|hk|2 dxdt,

where ∂tw(0) = ∂tZ
k(0)− ∂tvk(0). Moreover,

∂tZ
k(0) = (q̃k+1− qk)y0, ∂tv

k(0) = (p− qk)y0, hk = (p− qk)∂ty[p].

Therefore, since ϕ(t) ≤ ϕ(0) for all t ∈ (0, T ) we have :

s1/2

∫
Ω

e2sϕ(0)|y0|2(q̃k+1−p)2 dx ≤M‖∂ty[p]‖2L2(0,T ;L∞(Ω))

∫
Ω

e2sϕ(0)(qk−p)2 dx.

Using the positivity condition on y0 and the fact that

|qk+1 − p| = |Tm(q̃k+1)− Tm(p)| ≤ |q̃k+1 − p|

because Tm is Lipschitz and Tm(p) = p, we immediately deduce∫
Ω

e2sϕ(0)(qk+1 − p)2 dx ≤
(
M√
s

)k+1 ∫
Ω

e2sϕ(0)(q0 − p)2 dx. �



17 / 53

In theory, it works. But in practice?

Two remarks :

I Discretizing the wave equation brings numerical artefacts...

I Minimizing a strictly convex and coercive quadratic functional

based on a Carleman estimate means dealing with e2seλψ for

large parameters s and λ...

• New goal : propose a numerically efficient algorithm..

Ideas : We actually need an algorithm constructed with at least

I a regularization term in the cost functional,

I a single parameter Carleman estimate.
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Natural idea for reconstruction
Given a continuous measurement M [p] = ∂νy[p]|(0,T )×∂Ω

I Discretize the wave equation
∂ttyh −∆hyh + phyh = fh ' f,
yh|(0,T )×∂Ω = gh ' g,
(yh, ∂tyh)(t = 0) = (y0

h, y
1
h) ' (y0, y1).

I Solve the following discrete inverse problem : Find a

potential ph so that the corresponding discrete solution

yh[ph] approximates at best the measurement :

∂hyh[ph]|(0,T )×∂Ω (t, x) 'M [p](t, x)

i.e. ph = Argminqh ‖∂hyh[qh]−M [p]‖∗

Question : Do we get ph ' p?
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Convergence of the discrete inverse problems
Remarks :

I Natural question for all inverse problems in infinite dimensions :

Finding a source term, a conductivity...

I Depends a priori on the numerical scheme employed.

Main difficulty :

I Different dynamics for the continuous wave equation versus its

discrete approximations, cf Ervedoza - Zuazua ’11 :

 Numerical artefacts : High-frequency spurious waves.

Convergence results for the inverse problem :

I Penalization of high-frequencies with a regularization term in the

discrete Carleman estimates.

I 1D (LB & Ervedoza ’13) and 2D (LB & Ervedoza & Osses ’15)
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Numerical Simulations

I Ω = [0, 1], x0 = −0.1, Γ0 = {x = 1}, g = 0, β = 0.99, T = 1.5,

λ = 0.1, s = 1 ;

Γ0
0 1x0

I Discretization with the finite-difference method : N + 1 = 1
h ,

(∆hyh)j =
yj+1−2yj+yj−1

h2 , ∀j ∈ {1, · · · , N}

I Addition of a regularization term s

∫ T

0

∫ 1

0

e2sϕ|h∂+
h ∂tzh|

2 dt to

the cost functional Jk0 - from the discrete Carleman estimates -

to have uniformity with respect to the discretization parameter h.

Constraint : sh small enough.

 (LB & Ervedoza ’13) and (LB & Ervedoza & Osses ’15)

I Other approach : use high order finite elements to guarantee a

conformal approximation (Cîndea-FernándezCara-Münch ’13).
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Without (left) and with (right) regularization term

I Without noise, for p(x) = sin(2πx), one has
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New C-bRec algorithm

The algorithm is also modified according to the following items :

I Single parameter Carleman estimate ;

I Preconditioning of the cost functional ;

I Splitting of the observations by cut-off ;

... and the convergence result remains the same.
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A single parameter Carleman estimate

(Lavrentiev Romanov Shishatskii ’86)

Assuming the geometric condition on Γ0, Lq = ∂tt −∆x + q(x),

q ∈ L∞≤m(Ω), supx∈Ω |x− x0| < βT and

ϕ(t, x) = |x− x0|2 − βt2,

then ∃s0 > 0 and M = M(s0, T, β, x0,m) > 0 such that

s1/2

∫
Ω

e2sϕ(0)|∂tw(0)|2 dx︸ ︷︷ ︸
initial energy

≤M
∫ T

0

∫
Ω

e2sϕ|Lqw|2 dxdt︸ ︷︷ ︸
source

+ Ms

∫ T

0

∫
Γ0

e2sϕ |∂νw|2 dσdt︸ ︷︷ ︸
observation

+ Ms3

∫∫
{ϕ<0}

e2sϕ|w|2 dxdt
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Preconditioning the new cost functional

Recalling the former

Jk0 (z) =

∫ T

0

∫
Ω

e2sϕ|Lqkz|2 + s

∫ T

0

∫
Γ0

e2sϕ|∂νz − µk|2,

we remove some exponential factors by introducing the conjugate

variable y = eϕz in the new functional

J̃k0 (y) =

∫ T

0

∫
Ω

|Ls,qky|2 + s

∫ T

0

∫
Γ0

|∂νy − e2sϕµk|2 + s3

∫∫
{ϕ<0}

|y|2,

which is minimized on the same set T k as before and where the

conjugate operator is Ls,q = esϕ(∂2
t −∆ + q)e−sϕ.

Nevertheless, there is still an exponential factor in the measurements.
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Dealing finally with the observations
We split the observations in several slices and consider intervals in

which the weight function does not significantly change. To do that :

µkj = ηj(ϕ)µk, ∀τ ∈ R,
N∑
j=1

ηj(τ) = η(τ),

where the ηj are the following cut-off functions (ε = infΩ |x− x0|2) :

0 τε

1
η3 η2 η1

η

0 1

{ϕ < 0}
η(ϕ) = 0

ϕ
=

0

ϕ
=
ε

ηj
(ϕ

) =
1

x0

T

Yj minimizer of J̃k0 [µkj ] ⇒ Y =
∑N
j=1 Yj minimizer of J̃k[µk].
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Adapted C-bRec algorithm

Initialization : Any q ∈ L∞m (Ω).

Iteration : Given qk,

1 - Compute y[qk] the solution of


∂2
t y −∆y + qky = f,

y = g,

y(0) = y0, ∂ty(0) = y1,

and for each j, set µkj = ηj(ϕ)∂t
(
∂νy[qk]− µ

)
on Γ0 × (0, T ).

2 - Introduce the functional

J̃0[µkj ](y) =

∫ T

0

∫
Ω

|L y|2 + s

∫ T

0

∫
Γ0

|∂νy − µkj esϕ|2 + s3

∫∫
{ϕ<0}

|y|2.

3 - For each j, let Yj be the unique minimizer of the functional

J̃0[µkj ], and then set q̃k+1 = qk +
∑
j

∂tYj(0)

y0esϕ(0)
,

4 - Finally, set qk+1 = Tm(q̃k+1).
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Discretization of the problem

I Ω = [0, 1], x0 = −0.3, Γ0 = {x = 1}, β = 0.99, T = 1.3, s = 100,

f = 0, g = 2, u0(x) = 2 + sin(xπ) and u1 = 0.

Γ0
0 1

x0

I To avoid the inverse crime, we use 6= schemes and 6= meshes in

the direct and inverse problems :

I direct problem : finite differences in space h = 0.00025,

implicit theta scheme in time τ = 0.00033 ;
I inverse problem : finite differences in space h = 0.05,

explicit Euler scheme in time τ = 0.05, that is CFL = 1.
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Illustration of the convergence of the algorithm

(a) q0 (b) q1

(c) q2 (d) q3
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Illustration of the splitting

(e) q0
0 = q0 (f) q0

1 (g) q0
2

(h) q0
3 (i) q0

4 (j) q0
5 = q1
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Other 1D simulations

(a) p = −x (b) p = gate(x)

(c) p(x) = sin( x
1−x ) (d) p(x) = sin(2πx), with

q0 = 10
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Wrong choices of the parameters

(a) Wrong choice of m (b) y0 vanishes at x = 0.5

(c) No viscous term or sh

too large

(d) T = 0.9 < 1
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With noise on the measurement of the flux

s = 10 and the noise is multiplicative : 1%, 5%, 10%.

Taking s too large seems to amplify the effects of the noise...
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Numerical results in 2D

Ω = [0, 1]2, x0 = (−0.3,−0.3) and Γ0 = {x = 1} ∪ {y = 1}

Exact potentials (top) vs Numerical potentials (bottom).
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Recovery of the main coefficient

Wave equation with variable speed :
∂tty −∇ · (a(x)∇y) = f, in (0, T )× Ω,

y = g, on (0, T )× ∂Ω,

y(0) = y0, ∂ty(0) = y1, in Ω,

• Given data : Source terms (f, g), initial data : (y0, y1),

boundary values a = a and ∂νa = aν on ∂Ω.

• Unknown : the speed a = a(x) > 0, inside Ω.

• Additional measurement : the flux ∂νy(t, x) on (0, T )× ∂Ω.

Goal : Find the variable speed a = a(x).

 Application in medical imaging.
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Setting and assumptions

Ω

Γ0

T

ν(x)x

x0

I Geometric and time conditions :

∃x0 6∈ Ω, such that

Γ0 ⊃ {x ∈ ∂Ω, (x− x0) · ν(x) ≥ 0},

T >
supx∈Ω |x− x0|√

α0ρ0
.

I Regularity assumption y[a] ∈ H2(0, T ;W 2,∞(Ω)).

I Initial conditions : |∇y0(x) · (x− x0)| ≥ r0 > 0 and y1 = 0 in Ω.

I Va,aν = {a ∈ C1(Ω) ∩H2(Ω), ‖∇a‖L∞(Ω) ≤ m, 0 < α0 ≤ a ≤ α1,

∇a · (x− x0) ≤ 2(1− ρ)a in Ω, a = a, ∂νa = aν on ∂Ω}.

Theorem (Inverse problem stability)

There exists a positive constant M = M(Ω, T, x0, r0,a,aν , α0, α1)

such that for all a, ā ∈ Va,aν :
‖a− ā‖H1

0 (Ω) ≤M‖∂νy − ∂ν ȳ‖H2(0,T ;L2(Γ0)).
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Idea
The speed reconstruction algorithm is based on the fact that if y[a],

y[ak], are the solution of the wave equation, then

zk = ∂2
t

(
y[ak]− y[a]

)
solves 

∂ttz
k −∇ · (ak∇zk) = gk, in (0, T )× Ω,

zk = 0, on (0, T )× ∂Ω,

zk(0, ·) = zk0 , ∂tz
k(0, ·) = 0, in Ω,

where

gk = ∇ · ((ak − a)∇∂2
t y[a]), zk0 = ∇ · ((ak − a)∇w0),

and for both operators (wave and first order) we can prove Carleman

estimates.

 Holder stability results (Imanuvilov Yamamoto ’03)

 Lipschitz stability results (Klibanov Yamamoto ’06)

 Γ0 small, Logarithmic stability (Bellassoued Yamamoto ’06)
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First step of the C-bRec algorithm

0 rε

1
η

0

ϕ
=

0

ϕ
=
ε

x0

T

η ◦ ϕ = 0

η ◦ ϕ = 1

LΩ

Minimization of

Js,ak [µ](z) =
1

2

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∇ · (ak∇z)|2

+
s

2

∫ T

0

∫
Γ0

e2sϕ|∂νz − µ|2 +
s

2

∫∫
{ϕ<0}

e2sϕ
(
|∂tz|2 + |∇z|2 + s2|z|2

)
+
s

2

∫
Ω

e2sϕ(±T )
(
∂tz(±T )2 + |∇z(±T )|2 + s2z(±T )2

)
in order to approximate z̃k = η(ϕ)zk, that satisfies :

I z̃k(0, ·) = η(ϕ(0, ·))zk0 = ∇ · ((ak − a)∇y0) ;

I z̃k = η(ϕ)zk = 0 in {ϕ < 0} ; z̃k(±T, ·) = 0 because T large ;

I ∂ν z̃
k = µ̃k in (0, T )× Γ0.
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Second step

Then, we need to study the first order differential equation that

encapsulate ak − a.

One possibility is to solve the system{
∇ · (δa(x)∇y0(x)) = −z̃k(0, x), for x ∈ Ω,

δa = 0, on Γ∇y0 ⊂ ∂Ω.

Another possibility is to work from the minimization of

Ks,k(δa) =
1

2

∫
Ω

e2sϕ(0,·)|∇(∇ · (δa∇y0))−∇z̃k(0, ·)|2dx

on
{
δa ∈ H1

0 (Ω),∇δa · ∇w0 ∈ H1
0 (Ω)

}
, in order to approximate a.
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First Tool : Carleman estimate for the waves
(Klibanov-Timonov ’04, LB-deBuhan-Ervedoza-Osses ’19)

Under the previous assumptions on x0, Γ0, T , y[a], (y0, y1)

and using a less restrictive admissible set V,

∃ρ0 > 0,∀β ∈ (0, α0ρ0),∃s0 > 0,∃C > 0,∀s ≥ s0,∀a ∈ V,∫
Ω

e2sϕ(0)
(
∂tv(0)2 + |∇v(0)|2 + s2v(0)2

)
dx

≤ C
∫ T

−T

∫
Ω

e2sϕ(∂2
t v−∇ · (a∇v))2 dxdt+ Cs

∫ T

−T

∫
Γ0

e2sϕ |∂νv|2 dσdt

+ Cs

∫∫
{ϕ<0}

e2sϕ
(
(∂tv)2 + |∇v|2 + s2v2

)
dxdt

+ Cs

∫
Ω

e2sϕ(±T )
(
∂tv(±T )2 + |∇v(±T )|2 + s2v(±T )2

)
dx,

for all v ∈ L2((−T, T );H1
0 (Ω)), ∂νv ∈ L2((−T, T )× ∂Ω),

∂2
t v −∇ · (a∇v) ∈ L2((−T, T )× Ω), where ϕ denotes the weight

function ϕ(t, x) = |x− x0|2 − βt2.
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Second Tool : Carleman estimate for transport
(Klibanov-Yamamoto ’06)

Let x0 6∈ Ω and X be a vector field such that

X ∈W 2,∞(Ω;Rd) ∩ C0(Ω;Rd), and inf
x∈Ω

{|X(x) · (x− x0)|} > 0,

and set γX = sign(X(x) · (x− x0)), ΓX =
{
x ∈ ∂Ω, (X · ν)γX > 0

}
.

Then ∃s0 > 0,∃C > 0 such that ∀s ≥ s0,∫
Ω

e2s|x−x0|2
(
|∇(∇ · (bX))|2 + s2|∇b|2 + s4b2

)
dx

≤ C
∫

Ω

e2s|x−x0|2
(
|∇ (∇ · (bX)) |2 + s2|∇ · (bX)|2

)
dx

for any b ∈ H1
X(Ω) satisfying ∇ · (bX) ∈ H1

X(Ω) where

H1
X(Ω) =

{
b ∈ H1(Ω), b = 0 on ΓX

}
.

 To be applied to X = ∇y0.
ν

Ω

∇y0

Γ∇y0

x0
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Algorithm
We have access to the measurement µ = ∂νy[a] for a belonging to

the admissible set

V∗a,bν :=
{
a ∈W 1,∞(Ω), ∇ · (a∇w0) ∈ H1(Ω), ‖∇a‖L∞(Ω) ≤ m,

0 < α0 ≤ a ≤ α1 and ∇a · (x− x0) ≤ 2(1− ρ)a in Ω,

a = a and ∇a · ∇w0 = bν on ∂Ω
}
,

Initialization : Any a0 ∈ V∗a,bν .

Iteration : Given ak,

1 - Compute y[ak] the solution of
∂2
t y −∇ · (ak∇y) = f, in Ω× (0, T ),

y = g, on ∂Ω× (0, T ),

y(0) = y0, ∂ty(0) = 0, in Ω,

and set µk = η(ϕ)∂2
t

(
∂νy[ak]− µ

)
on Γ0 × (0, T ).
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2 - Introduce the functional

J̃0[µk](y) =
1

2

∫ T

0

∫
Ω

|Ly|2 dxdt+ s

2

∫ T

0

∫
Γ0

|∂νy−µkesϕ|2 dσdt

+
s

2

∫∫
{ϕ<0}

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt

+
s

2

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
(±T )dx+ regularization term

on the trajectories y ∈ L2(0, T ;H1
0 (Ω)), ∂νy ∈ L2((0, T )× Γ0),

∂2
t y −∇ · (ak∇y) ∈ L2((0, T )× Ω) and ∂ty(0, ·) = 0 in Ω, and where

Ly = esϕ(∂2
t −∇ · (ak∇))(e−sϕy) is the conjugate operator.

Lemma
Assume the geometric and time conditions. Then, for all s > 0, the

functional J̃0 is continuous, strictly convex and coercive on T
endowed with a suitable weighted norm.
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3 - Let Y k be the unique minimizer of the functional J̃0[µk] on T .

In particular, Y k(0, ·) ∈ H1
0 (Ω). Then minimize the functional

Ks,k(δa) =
1

2

∫
Ω

|∇(∇ · (δa∇w0))−∇Y k(0, ·)|2dx

on
{
δa ∈ H1

0 (Ω),∇δa · ∇w0 ∈ H1
0 (Ω)

}
, and denote its unique

minimizer by δak.

Then we set ãk+1 = ak + δak.

4 - Finally, set

ak+1 = Ta,bν
(
ãk+1

)
,

where Ta,bν is the projection on the admissible set V∗a,bν .
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Convergence result

The set V∗a,bν is closed and convex for the topology induced by the

norm ‖b‖2s =

∫
Ω

e2sϕ(0)
(
s2|∇b|2 + s4b2 + |∇ (∇ · (b∇w0)) |2

)
dx.

Theorem (LB-deBuhan-Ervedoza-Osses ’19)

Assume the geometric and time conditions, the regularity assumption

and the initial condition. Let a ∈ V∗a,bν .

There exists a constant M > 0 such that for all s large enough and for

all k ∈ N,

‖ak+1 − a‖2s ≤
C

inf{s2, e2s infΩ(ϕ(0)−ε)}
‖ak − a‖2s.

In particular, for s large enough, (ak)k∈N strongly converges to a in

the norm ‖ · ‖s.
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1D Numerical results
I f = 0, T = 5, s = 100, y0(x) = x− 1,

Γ0
Ω

0 1x0

I Finite differences scheme in space and time, avoiding inverse

crime : 6= meshes & scheme for direct and inverse problems ;

(a) a = 6 + sin(2πx) (b) a ∈ Va,aν

(c) a 6∈ Va,aν (d) a 6∈ Va,aν



47 / 53

Numerical results with noisy data

I ∂2
t µ = (1 + αN (0, 0.5))∂2

t µ, α ≥ 0, a = 6 + cos(2πx)

(a) α = 0% - iterations (b) α = 5%

(c) α = 10% (d) α = 20%
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Other numerics

(a) T = L/
√
α0 (b) T = L/2

√
α0

(c) a 6∈ Va,aν (d) iterations
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Other numerics

(a) α = 0% (b) iterations

(c) α = 5% (d) α = 10%
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A glimpse to 2D results

(a) Reconstruction with inverse crime (b) Reconstruction without

? ? ?
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Conclusion

Flaws

I Projection operator Ta,aν on the admissible set Va,aν ...

I Constraining initial condition on y0 (inside the domain) :

|∇y0 · (x− x0)| > 0 in Ω.

I 2D simulations are not finished yet !

Hopes

I Could we design a real imaging system using this strategy?

I Challenges to work with other equations?

? ? ?
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Thank you for your attention.

?

Related articles
I Carleman-based Reconstruction algorithm,

L. B., M. de Buhan, S. Ervedoza & A. Osses, in preparation.

I Convergent algorithm based on Carleman estimates for the recovery of a potential in the wave equation,
L. B., M. de Buhan & S. Ervedoza, SINUM 2017.

I Stability of an inverse problem for the discrete wave equation and convergence results,
L. B., S. Ervedoza & A. Osses, JMPA 2015.

I Global Carleman estimates for waves and applications,
L. B., M. de Buhan & S. Ervedoza, Comm. PDE 2013.

I Convergence of an inverse problem for discrete wave equations,
L. B. & S. Ervedoza, SICON 2013.
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Numerics with noise in the data
µ = (1 + αN (0, 0.5))µ, α ≥ 0, a = 6 + sin(2πx)

Problem : we derive in time the observations ∂2
t µ.

Observation at x = 1 Time derivative

We regularize the signal by convolutions with a gaussian.

(c) α = 1% (d) α = 2% (e) α = 4%
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Numerics with noise in the data
µ = (1 + αN (0, 0.5))µ, α ≥ 0, a = 6 + sin(2πx)

Problem : we derive in time the observations ∂2
t µ.

Observation at x = 1 Time derivative

We regularize the signal by convolutions with a gaussian.

(f) α = 1% (g) α = 2% (h) α = 4%
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Numerics with noise in the data
µ = (1 + αN (0, 0.5))µ, α ≥ 0, a = 6 + sin(2πx)

Problem : we derive in time the observations ∂2
t µ.

Observation at x = 1 Time derivative

We regularize the signal by convolutions with a gaussian.

(i) α = 1% (j) α = 2% (k) α = 4%
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