Dedicated to Jean-Pierre Raymond

Analysis of control problems of nonmontone semilinear elliptic equations

Eduardo Casas

University of Cantabria
Santander, Spain
eduardo.casas@unican.es
A joint work with Mariano Mateos (University of Oviedo, Spain) and Arnd Rösch (University of Duisburg-Essen, Germany)

Dedicated to Jean-Pierre Raymond

The Control Problem

(P) $\min _{u \in U_{a d}} J(u):=\frac{1}{2} \int_{\Omega}\left(y_{u}(x)-y_{d}(x)\right)^{2} d x+\frac{\nu}{2} \int_{\Omega} u^{2}(x) d x \quad(\nu>0)$

University of Cantabria

Dedicated to Jean-Pierre Raymond

The Control Problem

(P) $\min _{u \in U_{a d}} J(u):=\frac{1}{2} \int_{\Omega}\left(y_{u}(x)-y_{d}(x)\right)^{2} d x+\frac{\nu}{2} \int_{\Omega} u^{2}(x) d x \quad(\nu>0)$

$$
\begin{aligned}
\mathcal{U}_{a d}= & \left\{u \in L^{2}(\Omega): \alpha \leq u(x) \leq \beta \text { a.e. in } \Omega\right\} \\
& (-\infty \leq \alpha<\beta \leq+\infty)
\end{aligned}
$$

University of Cantabria

Dedicated to Jean-Pierre Raymond

The Control Problem

(P) $\min _{u \in U_{a d}} J(u):=\frac{1}{2} \int_{\Omega}\left(y_{u}(x)-y_{d}(x)\right)^{2} d x+\frac{\nu}{2} \int_{\Omega} u^{2}(x) d x \quad(\nu>0)$

$$
\begin{aligned}
\mathcal{U}_{a d}= & \left\{u \in L^{2}(\Omega): \alpha \leq u(x) \leq \beta \text { a.e. in } \Omega\right\} \\
& (-\infty \leq \alpha<\beta \leq+\infty)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
A y+b(x) \cdot \nabla y+f(x, y)=u \text { in } \Omega \\
y=0 \text { on } \Gamma
\end{array}\right.
$$

University of Cantabria

Dedicated to Jean-Pierre Raymond

Assumptions on the Linear Operator

- Ω is an open domain in $\mathbb{R}^{n}, n=2$ or 3 , with Lipschitz boundary Γ

Dedicated to Jean-Pierre Raymond

Assumptions on the Linear Operator

- Ω is an open domain in $\mathbb{R}^{n}, n=2$ or 3 , with Lipschitz boundary Γ
- $A y=-\sum_{i, j=1}^{n} \partial_{x_{j}}\left(a_{i j}(x) \partial_{x_{i}} y\right)$ with $a_{i j} \in L^{\infty}(\Omega)$,

Dedicated to Jean-Pierre Raymond

Assumptions on the Linear Operator

- Ω is an open domain in $\mathbb{R}^{n}, n=2$ or 3 , with Lipschitz boundary Γ
- $A y=-\sum_{i, j=1}^{n} \partial_{x_{j}}\left(a_{i j}(x) \partial_{x_{i}} y\right)$ with $a_{i j} \in L^{\infty}(\Omega)$,
- $\exists \Lambda>0$ such that $\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \Lambda|\xi|^{2} \quad \forall \xi \in \mathbb{R}^{n}$ and for a.a. $x \in \Omega$

14
$\$$
4
1
Back
Close

Dedicated to Jean-Pierre Raymond

Assumptions on the Linear Operator

- Ω is an open domain in $\mathbb{R}^{n}, n=2$ or 3 , with Lipschitz boundary Γ
- $A y=-\sum_{i, j=1}^{n} \partial_{x_{j}}\left(a_{i j}(x) \partial_{x_{i}} y\right)$ with $a_{i j} \in L^{\infty}(\Omega)$,
- $\exists \Lambda>0$ such that $\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \Lambda|\xi|^{2} \forall \xi \in \mathbb{R}^{n}$ and for a.a. $x \in \Omega$
- $b \in L^{p}(\Omega)$ for some p to be fixed later

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator
 - $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

4
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator
 - $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>n, a_{0} \in L^{q}(\Omega)$ with $q>1$ if $n=2$ and $q \geq \frac{3}{2}$ if $n=3$. Then, $\mathcal{A}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isomorphism.

University of Cantabria

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator
 - $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>n, a_{0} \in L^{q}(\Omega)$ with $q>1$ if $n=2$ and $q \geq \frac{3}{2}$ if $n=3$. Then, $\mathcal{A}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isomorphism.

- If $\mathcal{A} y \leq 0 \Rightarrow y \leq 0$ (Gilbarg and Trudinger)

University of Cantabria

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator
 - $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>n, a_{0} \in L^{q}(\Omega)$ with $q>1$ if $n=2$ and $q \geq \frac{3}{2}$ if $n=3$. Then, $\mathcal{A}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isomorphism.

- If $\mathcal{A} y \leq 0 \Rightarrow y \leq 0$ (Gilbarg and Trudinger)
- We take $0<\rho<\operatorname{ess} \sup _{x \in \Omega} y(x), z(x)=(y(x)-\rho)^{+}$.

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator

- $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>n, a_{0} \in L^{q}(\Omega)$ with $q>1$ if $n=2$ and $q \geq \frac{3}{2}$ if $n=3$. Then, $\mathcal{A}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isomorphism.

- If $\mathcal{A} y \leq 0 \Rightarrow y \leq 0$ (Gilbarg and Trudinger)
- We take $0<\rho<\operatorname{ess} \sup _{x \in \Omega} y(x), z(x)=(y(x)-\rho)^{+}$.
- $\Omega_{\rho}=\{x \in \Omega: \nabla z(x) \neq 0\}$.

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator

- $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>n, a_{0} \in L^{q}(\Omega)$ with $q>1$ if $n=2$ and $q \geq \frac{3}{2}$ if $n=3$. Then, $\mathcal{A}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isomorphism.

- If $\mathcal{A} y \leq 0 \Rightarrow y \leq 0$ (Gilbarg and Trudinger)
- We take $0<\rho<\operatorname{ess} \sup _{x \in \Omega} y(x), z(x)=(y(x)-\rho)^{+}$.
- $\Omega_{\rho}=\{x \in \Omega: \nabla z(x) \neq 0\}$. $\left|\Omega_{\rho}\right| \rightarrow 0$ when $\rho \rightarrow \operatorname{ess} \sup _{x \in \Omega} y(x)$.

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator

- $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>n, a_{0} \in L^{q}(\Omega)$ with $q>1$ if $n=2$ and $q \geq \frac{3}{2}$ if $n=3$. Then, $\mathcal{A}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isomorphism.

- If $\mathcal{A} y \leq 0 \Rightarrow y \leq 0$ (Gilbarg and Trudinger)
- We take $0<\rho<\operatorname{ess} \sup _{x \in \Omega} y(x), z(x)=(y(x)-\rho)^{+}$.
- $\Omega_{\rho}=\{x \in \Omega: \nabla z(x) \neq 0\}$. $\left|\Omega_{\rho}\right| \rightarrow 0$ when $\rho \rightarrow \operatorname{ess} \sup _{x \in \Omega} y(x)$.
- $0 \geq\langle\mathcal{A} z, z\rangle \geq \Lambda\|\nabla z\|_{L^{2}(\Omega)^{3}}^{2}-\|b\|_{L^{3}\left(\Omega_{\rho}\right)^{3}}\|\nabla z\|_{L^{2}(\Omega)^{3}}\|z\|_{L^{6}(\Omega)}$

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator

- $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>n, a_{0} \in L^{q}(\Omega)$ with $q>1$ if $n=2$ and $q \geq \frac{3}{2}$ if $n=3$. Then, $\mathcal{A}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isomorphism.

- If $\mathcal{A} y \leq 0 \Rightarrow y \leq 0$ (Gilbarg and Trudinger)
- We take $0<\rho<\operatorname{ess} \sup _{x \in \Omega} y(x), z(x)=(y(x)-\rho)^{+}$.
- $\Omega_{\rho}=\{x \in \Omega: \nabla z(x) \neq 0\}$. $\left|\Omega_{\rho}\right| \rightarrow 0$ when $\rho \rightarrow \operatorname{ess} \sup _{x \in \Omega} y(x)$.
- $0 \geq\langle\mathcal{A} z, z\rangle \geq \Lambda\|\nabla z\|_{L^{2}(\Omega)^{3}}^{2}-\|b\|_{L^{3}\left(\Omega_{\rho}\right)^{3}}\|\nabla z\|_{L^{2}(\Omega)^{3}}\|z\|_{L^{6}(\Omega)}$
- $\|b\|_{L^{3}\left(\Omega_{\rho}\right)^{3}} \geq \frac{C}{\Lambda}>0 \forall \rho$

Dedicated to Jean-Pierre Raymond

Study of the Linear Operator

- $\mathcal{A} y=A y+b(x) \cdot \nabla y+a_{0}(x) y, a_{0} \geq 0$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>n, a_{0} \in L^{q}(\Omega)$ with $q>1$ if $n=2$ and $q \geq \frac{3}{2}$ if $n=3$. Then, $\mathcal{A}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ is an isomorphism.

- If $\mathcal{A} y \leq 0 \Rightarrow y \leq 0$ (Gilbarg and Trudinger)
- We take $0<\rho<\operatorname{ess} \sup _{x \in \Omega} y(x), z(x)=(y(x)-\rho)^{+}$.
- $\Omega_{\rho}=\{x \in \Omega: \nabla z(x) \neq 0\}$. $\left|\Omega_{\rho}\right| \rightarrow 0$ when $\rho \rightarrow \operatorname{ess} \sup _{x \in \Omega} y(x)$.
- $0 \geq\langle\mathcal{A} z, z\rangle \geq \Lambda\|\nabla z\|_{L^{2}(\Omega)^{3}}^{2}-\|b\|_{L^{3}\left(\Omega_{\rho}\right)^{3}}\|\nabla z\|_{L^{2}(\Omega)^{3}}\|z\|_{L^{6}(\Omega)}$
- $\|b\|_{L^{3}\left(\Omega_{\rho}\right)^{3}} \geq \frac{C}{\Lambda}>0 \forall \rho$
- Fredholm Alternative

Dedicated to Jean-Pierre Raymond

Regularity of the Solution

Theorem. Assume that $a_{i j} \in C^{0,1}(\bar{\Omega})$ for $1 \leq i, j \leq n, b \in L^{p}(\Omega)^{n}$ for some $p>n$, and $a_{0} \in L^{2}(\Omega)$. We also suppose that Γ is of class $C^{1,1}$ or Ω is convex. Then, $\mathcal{A}: H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \longrightarrow L^{2}(\Omega)$ is an isomorphism.

Dedicated to Jean-Pierre Raymond

The Adjoint Equation

Corollary. The adjoint operator $\mathcal{A}^{*}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ given by

$$
\mathcal{A}^{*} \varphi=A^{*} \varphi-\operatorname{div}[b(x) \varphi]+a_{0}(x) \varphi
$$

is an isomorphism.

Dedicated to Jean-Pierre Raymond

The Adjoint Equation

Corollary. The adjoint operator $\mathcal{A}^{*}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ given by

$$
\mathcal{A}^{*} \varphi=A^{*} \varphi-\operatorname{div}[b(x) \varphi]+a_{0}(x) \varphi
$$

is an isomorphism.

Corollary. Assume that $a_{i j} \in C^{0,1}(\bar{\Omega})$ for $1 \leq i, j \leq n, b \in L^{p}(\Omega)^{n}$ for some $p>n$, and $a_{0} \in L^{2}(\Omega)$. We also suppose that $\operatorname{div} b \in L^{2}(\Omega)$, Γ is of class $C^{1,1}$ or Ω is convex. Then, $\mathcal{A}^{*}: H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \longrightarrow L^{2}(\Omega)$ is an isomorphism.

Dedicated to Jean-Pierre Raymond

The Adjoint Equation

Corollary. The adjoint operator $\mathcal{A}^{*}: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ given by

$$
\mathcal{A}^{*} \varphi=A^{*} \varphi-\operatorname{div}[b(x) \varphi]+a_{0}(x) \varphi
$$

is an isomorphism.

Corollary. Assume that $a_{i j} \in C^{0,1}(\bar{\Omega})$ for $1 \leq i, j \leq n, b \in L^{p}(\Omega)^{n}$ for some $p>n$, and $a_{0} \in L^{2}(\Omega)$. We also suppose that $\operatorname{div} b \in L^{2}(\Omega)$, Γ is of class $C^{1,1}$ or Ω is convex. Then, $\mathcal{A}^{*}: H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \longrightarrow L^{2}(\Omega)$ is an isomorphism.

Proof. $\mathcal{A}^{*} \varphi=A^{*} \varphi-b(x) \nabla \varphi+\left(a_{0}(x)-\operatorname{div} b(x)\right) \varphi$

Dedicated to Jean-Pierre Raymond

Assumptions on Semilinear Equation

- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, monotone nondecreasing with respect to the second variable

University

$\mathbf{~} 4$
\downarrow
$\mathbf{~}$
\downarrow
Back
Close

Dedicated to Jean-Pierre Raymond

Assumptions on Semilinear Equation

- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, monotone nondecreasing with respect to the second variable
- $\forall M>0 \exists \phi_{M} \in L^{\bar{p}}(\Omega)$ with $\bar{p}>\frac{n}{2}:|f(x, y)| \leq \phi_{M}(x)$ for a.a. $x \in \Omega$ and $\forall|y| \leq M$

University of Cantabria

$\mathbf{~} 4$
$>$
$\mathbf{~}$
Back
Close

Dedicated to Jean-Pierre Raymond

Assumptions on Semilinear Equation

- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, monotone nondecreasing with respect to the second variable
- $\forall M>0 \exists \phi_{M} \in L^{\bar{p}}(\Omega)$ with $\bar{p}>\frac{n}{2}:|f(x, y)| \leq \phi_{M}(x)$ for a.a. $x \in \Omega$ and $\forall|y| \leq M$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>2$ if $n=2$ and $p>6$ if $n=3$. For every $u \in L^{\bar{p}}(\Omega)$ the semilinear equation has a unique solution y_{u} in $H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$.

Dedicated to Jean-Pierre Raymond

Assumptions on Semilinear Equation

- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, monotone nondecreasing with respect to the second variable
- $\forall M>0 \exists \phi_{M} \in L^{\bar{p}}(\Omega)$ with $\bar{p}>\frac{n}{2}:|f(x, y)| \leq \phi_{M}(x)$ for a.a. $x \in \Omega$ and $\forall|y| \leq M$

Theorem. Let $b \in L^{p}(\Omega)^{n}$ with $p>2$ if $n=2$ and $p>6$ if $n=3$. For every $u \in L^{\bar{p}}(\Omega)$ the semilinear equation has a unique solution y_{u} in $H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$. Moreover, there exists a constant K_{f} independent of u such that

$$
\left\|y_{u}\right\|_{H_{0}^{1}(\Omega)}+\left\|y_{u}\right\|_{C(\bar{\Omega})} \leq K_{f}\left(\|u\|_{L^{\bar{p}}(\Omega)}+\|f(\cdot, 0)\|_{L^{\bar{p}}(\Omega)}+1\right)
$$

Dedicated to Jean-Pierre Raymond

A Monotonicity Result

Lemma. Under the assumptions of the above theorem, if $y_{1}, y_{2} \in$ $H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are solutions of the equations

$$
A y_{i}+b(x) \cdot \nabla y_{i}+f\left(x, y_{i}\right)=u_{i}, \quad i=1,2
$$

with $u_{1}, u_{2} \in L^{\bar{p}}(\Omega)$ and $u_{1} \leq u_{2}$ in Ω, then $y_{1} \leq y_{2}$ in Ω as well.

Dedicated to Jean-Pierre Raymond

A Monotonicity Result

Lemma. Under the assumptions of the above theorem, if $y_{1}, y_{2} \in$ $H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are solutions of the equations

$$
A y_{i}+b(x) \cdot \nabla y_{i}+f\left(x, y_{i}\right)=u_{i}, \quad i=1,2
$$

with $u_{1}, u_{2} \in L^{\bar{p}}(\Omega)$ and $u_{1} \leq u_{2}$ in Ω, then $y_{1} \leq y_{2}$ in Ω as well.

- The uniqueness of a solution of the state equation is consequence of the above lemma.

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.

14
$>$
$\mathbf{1}$
\downarrow
Back
Close

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$.

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$. We use Schauder's Theorem.

University of Cantabria

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$. We use Schauder's Theorem.
- Step 2: $\exists \phi \in L^{\bar{p}}(\Omega)$ such that $f(x, y) \geq \phi(x)$ in $\Omega \times \mathbb{R}$.

University of Cantabria

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$. We use Schauder's Theorem.
- Step 2: $\exists \phi \in L^{\bar{p}}(\Omega)$ such that $f(x, y) \geq \phi(x)$ in $\Omega \times \mathbb{R}$.

$$
f_{k}(x, y)=f(x, \min \{y, k\})
$$

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$. We use Schauder's Theorem.
- Step 2: $\exists \phi \in L^{\bar{p}}(\Omega)$ such that $f(x, y) \geq \phi(x)$ in $\Omega \times \mathbb{R}$.

$$
f_{k}(x, y)=f(x, \min \{y, k\}) \Rightarrow \phi(x) \leq f_{k}(x, y) \leq \phi_{k}(x)
$$

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$. We use Schauder's Theorem.
- Step 2: $\exists \phi \in L^{\bar{p}}(\Omega)$ such that $f(x, y) \geq \phi(x)$ in $\Omega \times \mathbb{R}$.

$$
\begin{aligned}
& f_{k}(x, y)=f(x, \min \{y, k\}) \Rightarrow \phi(x) \leq f_{k}(x, y) \leq \phi_{k}(x) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$. We use Schauder's Theorem.
- Step 2: $\exists \phi \in L^{\bar{p}}(\Omega)$ such that $f(x, y) \geq \phi(x)$ in $\Omega \times \mathbb{R}$.

$$
\begin{aligned}
& f_{k}(x, y)=f(x, \min \{y, k\}) \Rightarrow \phi(x) \leq f_{k}(x, y) \leq \phi_{k}(x) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A y+b(x) \cdot \nabla y=u-\phi
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$. We use Schauder's Theorem.
- Step 2: $\exists \phi \in L^{\bar{p}}(\Omega)$ such that $f(x, y) \geq \phi(x)$ in $\Omega \times \mathbb{R}$.

$$
\begin{aligned}
& f_{k}(x, y)=f(x, \min \{y, k\}) \Rightarrow \phi(x) \leq f_{k}(x, y) \leq \phi_{k}(x) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A y+b(x) \cdot \nabla y=u-\phi \\
& A\left(y-y_{k}\right)+b(x) \cdot \nabla\left(y-y_{k}\right)=f_{k}\left(x, y_{k}\right)-\phi \geq 0
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

Existence: Sketch of Proof

- We redefine $f=f-f(\cdot, 0)$ and $u=u-f(\cdot, 0) \in L^{\bar{p}}(\Omega)$.
- Step 1: $\exists \phi \in L^{\bar{p}}(\Omega):|f(x, y)| \leq \phi(x)$ in $\Omega \times \mathbb{R}$. We use Schauder's Theorem.
- Step 2: $\exists \phi \in L^{\bar{p}}(\Omega)$ such that $f(x, y) \geq \phi(x)$ in $\Omega \times \mathbb{R}$.

$$
\begin{aligned}
& f_{k}(x, y)=f(x, \min \{y, k\}) \Rightarrow \phi(x) \leq f_{k}(x, y) \leq \phi_{k}(x) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A y+b(x) \cdot \nabla y=u-\phi \\
& A\left(y-y_{k}\right)+b(x) \cdot \nabla\left(y-y_{k}\right)=f_{k}\left(x, y_{k}\right)-\phi \geq 0 \\
& \Rightarrow y_{k} \leq y \Rightarrow f_{k}\left(x, y_{k}\right)=f\left(x, y_{k}\right) \text { if } k \geq\|y\|_{\infty}
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right)
$$

University of Cantabria

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u
\end{aligned}
$$

University of Cantabria

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f\left(x, z_{1}^{+}\right)=u
\end{aligned}
$$

University of Cantabria

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f\left(x, z_{1}^{+}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f_{k}\left(x, z_{1}\right)=u+f_{k}\left(x, z_{1}\right)-f\left(x, z_{1}^{+}\right) \leq u
\end{aligned}
$$

University of Cantabria

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f\left(x, z_{1}^{+}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f_{k}\left(x, z_{1}\right)=u+f_{k}\left(x, z_{1}\right)-f\left(x, z_{1}^{+}\right) \leq u \\
& \Rightarrow z_{1} \leq y_{k} \quad \forall k \geq 1
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f\left(x, z_{1}^{+}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f_{k}\left(x, z_{1}\right)=u+f_{k}\left(x, z_{1}\right)-f\left(x, z_{1}^{+}\right) \leq u \\
& \Rightarrow z_{1} \leq y_{k} \quad \forall k \geq 1 \\
& A z_{2}+b(x) \cdot \nabla z_{2}=u-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right)
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f\left(x, z_{1}^{+}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f_{k}\left(x, z_{1}\right)=u+f_{k}\left(x, z_{1}\right)-f\left(x, z_{1}^{+}\right) \leq u \\
& \Rightarrow z_{1} \leq y_{k} \quad \forall k \geq 1 \\
& A z_{2}+b(x) \cdot \nabla z_{2}=u-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right) \\
& A\left(z_{2}-y_{k}\right)+b(x) \cdot \nabla\left(z_{2}-y_{k}\right)=f_{k}\left(x, y_{k}\right)-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right) \geq 0
\end{aligned}
$$

University of Cantabria

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f\left(x, z_{1}^{+}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f_{k}\left(x, z_{1}\right)=u+f_{k}\left(x, z_{1}\right)-f\left(x, z_{1}^{+}\right) \leq u \\
& \Rightarrow z_{1} \leq y_{k} \quad \forall k \geq 1 \\
& A z_{2}+b(x) \cdot \nabla z_{2}=u-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right) \\
& A\left(z_{2}-y_{k}\right)+b(x) \cdot \nabla\left(z_{2}-y_{k}\right)=f_{k}\left(x, y_{k}\right)-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right) \geq 0 \\
& \Rightarrow y_{k} \leq z_{2}
\end{aligned}
$$

University of Cantabria

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f\left(x, z_{1}^{+}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f_{k}\left(x, z_{1}\right)=u+f_{k}\left(x, z_{1}\right)-f\left(x, z_{1}^{+}\right) \leq u \\
& \Rightarrow z_{1} \leq y_{k} \quad \forall k \geq 1 \\
& A z_{2}+b(x) \cdot \nabla z_{2}=u-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right) \\
& A\left(z_{2}-y_{k}\right)+b(x) \cdot \nabla\left(z_{2}-y_{k}\right)=f_{k}\left(x, y_{k}\right)-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right) \geq 0 \\
& \Rightarrow y_{k} \leq z_{2} \Rightarrow\left\|y_{k}\right\|_{C(\bar{\Omega})} \leq \max \left\{\left\|z_{1}\right\|_{C(\bar{\Omega})},\left\|z_{2}\right\|_{C(\bar{\Omega})}\right\}
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

- Step 3: The general case.

$$
\begin{aligned}
& f_{k}(x, y)=f\left(x, \operatorname{proj}_{[-k,+k]}(y)\right) \\
& A y_{k}+b(x) \cdot \nabla y_{k}+f_{k}\left(x, y_{k}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f\left(x, z_{1}^{+}\right)=u \\
& A z_{1}+b(x) \cdot \nabla z_{1}+f_{k}\left(x, z_{1}\right)=u+f_{k}\left(x, z_{1}\right)-f\left(x, z_{1}^{+}\right) \leq u \\
& \Rightarrow z_{1} \leq y_{k} \quad \forall k \geq 1 \\
& A z_{2}+b(x) \cdot \nabla z_{2}=u-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right) \\
& A\left(z_{2}-y_{k}\right)+b(x) \cdot \nabla\left(z_{2}-y_{k}\right)=f_{k}\left(x, y_{k}\right)-f\left(x,-\left\|z_{1}\right\|_{C(\bar{\Omega})}\right) \geq 0 \\
& \Rightarrow y_{k} \leq z_{2} \Rightarrow\left\|y_{k}\right\|_{C(\bar{\Omega})} \leq \max \left\{\left\|z_{1}\right\|_{C(\bar{\Omega})},\left\|z_{2}\right\|_{C(\bar{\Omega})}\right\} \\
& f_{k}\left(x, y_{k}\right)=f\left(x, y_{k}\right) \quad \forall k \geq \max \left\{\left\|z_{1}\right\|_{C(\bar{\Omega})},\left\|z_{2}\right\|_{C(\bar{\Omega})}\right\}
\end{aligned}
$$

UC
University of Cantabria

44
1 4

Dedicated to Jean-Pierre Raymond

Continuity of $u \rightarrow y$ and regularity of y

$\mathbf{~} 4$
Δ
$\mathbf{~}$
\downarrow
Back
Close

Dedicated to Jean-Pierre Raymond

Continuity of $u \rightarrow y$ and regularity of y

Theorem. Let $\left\{u_{k}\right\}_{k=1}^{\infty} \subset L^{\bar{p}}(\Omega)$ with $\bar{p}>\frac{n}{2}$ be a sequence weakly converging to u in $L^{\bar{p}}(\Omega)$. Then, $y_{u_{k}} \rightarrow y_{u}$ strongly in $H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$, where $y_{u_{k}}$ is the solution of the semilinear equation associated to u_{k}.

Dedicated to Jean-Pierre Raymond

Continuity of $u \rightarrow y$ and regularity of y

Theorem. Let $\left\{u_{k}\right\}_{k=1}^{\infty} \subset L^{\bar{p}}(\Omega)$ with $\bar{p}>\frac{n}{2}$ be a sequence weakly converging to u in $L^{\bar{p}}(\Omega)$. Then, $y_{u_{k}} \rightarrow y_{u}$ strongly in $H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$, where $y_{u_{k}}$ is the solution of the semilinear equation associated to u_{k}.

Theorem. Suppose that assumption on f holds with $\bar{p}=2, a_{i j} \in$ $C^{0,1}(\bar{\Omega})$ for $1 \leq i, j \leq n$, and $b \in L^{p}(\Omega)^{n}$ with $p>2$ if $n=2$ and $p>6$ if $n=3$. We also suppose that Γ is of class $C^{1,1}$ or Ω is convex. Then, for every $u \in L^{2}(\Omega)$ the state equation has a unique solution $y_{u} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.

Dedicated to Jean-Pierre Raymond

Existence of solution of (P)

- We recall that
(P) $\min _{u \in \mathcal{U}_{a d}} J(u):=\frac{1}{2} \int_{\Omega}\left(y_{u}(x)-y_{d}(x)\right)^{2} d x+\frac{\nu}{2} \int_{\Omega} u^{2}(x) d x \quad(\nu>0)$

University of Cantabria

Dedicated to Jean-Pierre Raymond

Existence of solution of (P)

- We recall that
(P) $\min _{u \in \mathcal{U}_{a d}} J(u):=\frac{1}{2} \int_{\Omega}\left(y_{u}(x)-y_{d}(x)\right)^{2} d x+\frac{\nu}{2} \int_{\Omega} u^{2}(x) d x \quad(\nu>0)$

Theorem. The control problem (P) has at least one solution \bar{u}.

University of Cantabria

Dedicated to Jean-Pierre Raymond

Differentiability Assumptions on f

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Differentiability Assumptions on f

- $f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is of class C^{2} w.r.t. the second variable

Dedicated to Jean-Pierre Raymond

Differentiability Assumptions on f

- $f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is of class C^{2} w.r.t. the second variable
- $f(\cdot, 0) \in L^{\bar{p}}(\Omega)$ with $\bar{p}>\frac{n}{2}$ and $\frac{\partial f}{\partial y}(x, y) \geq 0$ a.e. in Ω and $\forall y \in \mathbb{R}$

Dedicated to Jean-Pierre Raymond

Differentiability Assumptions on f

- $f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is of class C^{2} w.r.t. the second variable
- $f(\cdot, 0) \in L^{\bar{p}}(\Omega)$ with $\bar{p}>\frac{n}{2}$ and $\frac{\partial f}{\partial y}(x, y) \geq 0$ a.e. in Ω and $\forall y \in \mathbb{R}$
$\bullet \forall M>0 \exists C_{f, M}:\left|\frac{\partial f}{\partial y}(x, y)\right|+\left|\frac{\partial^{2} f}{\partial y^{2}}(x, y)\right| \leq C_{f, M} \forall|y| \leq M$

Dedicated to Jean-Pierre Raymond

Differentiability Assumptions on f

- $f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is of class C^{2} w.r.t. the second variable
- $f(\cdot, 0) \in L^{\bar{p}}(\Omega)$ with $\bar{p}>\frac{n}{2}$ and $\frac{\partial f}{\partial y}(x, y) \geq 0$ a.e. in Ω and $\forall y \in \mathbb{R}$
$\bullet \forall M>0 \exists C_{f, M}:\left|\frac{\partial f}{\partial y}(x, y)\right|+\left|\frac{\partial^{2} f}{\partial y^{2}}(x, y)\right| \leq C_{f, M} \forall|y| \leq M$
- $\left\{\begin{array}{l}\forall M>0 \text { and } \forall \varepsilon>0 \exists \delta>0 \text { such that } \\ \left|\frac{\partial^{2} f}{\partial y^{2}}\left(x, y_{2}\right)-\frac{\partial^{2} f}{\partial y^{2}}\left(x, y_{1}\right)\right|<\varepsilon \text { if }\left|y_{1}\right|,\left|y_{2}\right| \leq M,\left|y_{2}-y_{1}\right| \leq \delta\end{array}\right.$

Dedicated to Jean-Pierre Raymond

Differentiability of the Mapping $u \rightarrow y_{u}$

4
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Differentiability of the Mapping $u \rightarrow y_{u}$

Given $\hat{p}>\frac{n}{2}$, let us denote $G: L^{\hat{p}}(\Omega) \longrightarrow Y=H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ the mapping associating with each control the state $G(u)=y_{u}$.

Dedicated to Jean-Pierre Raymond

Differentiability of the Mapping $u \rightarrow y_{u}$

Given $\hat{p}>\frac{n}{2}$, let us denote $G: L^{\hat{p}}(\Omega) \longrightarrow Y=H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ the mapping associating with each control the state $G(u)=y_{u}$.

Theorem. The control-to-state mapping G is of class C^{2}

Dedicated to Jean-Pierre Raymond

Differentiability of the Mapping $u \rightarrow y_{u}$

Given $\hat{p}>\frac{n}{2}$, let us denote $G: L^{\hat{p}}(\Omega) \longrightarrow Y=H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ the mapping associating with each control the state $G(u)=y_{u}$.

Theorem. The control-to-state mapping G is of class C^{2} and for every $u, v \in L^{\hat{p}}(\Omega)$, we have that $z_{v}=G^{\prime}(u) v$ is the solution of

$$
\left\{\begin{array}{l}
A z+b(x) \cdot \nabla z+\frac{\partial f}{\partial y}\left(x, y_{u}\right) z=v \text { in } \Omega \\
z=0 \text { on } \Gamma
\end{array}\right.
$$

Dedicated to Jean-Pierre Raymond

Differentiability of the Mapping $u \rightarrow y_{u}$

Given $\hat{p}>\frac{n}{2}$, let us denote $G: L^{\hat{p}}(\Omega) \longrightarrow Y=H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ the mapping associating with each control the state $G(u)=y_{u}$.

Theorem. The control-to-state mapping G is of class C^{2} and for every $u, v \in L^{\hat{p}}(\Omega)$, we have that $z_{v}=G^{\prime}(u) v$ is the solution of

$$
\left\{\begin{array}{l}
A z+b(x) \cdot \nabla z+\frac{\partial f}{\partial y}\left(x, y_{u}\right) z=v \text { in } \Omega \\
z=0 \text { on } \Gamma
\end{array}\right.
$$

and for $v, w \in L^{\hat{p}}(\Omega), z_{v, w}=G^{\prime \prime}(u)(v, w)$ solves the equation

$$
\left\{\begin{array}{l}
A z+b(x) \cdot \nabla z+\frac{\partial f}{\partial y}\left(x, y_{u}\right) z+\frac{\partial^{2} f}{\partial y^{2}}\left(x, y_{u}\right) z_{v} z_{w}=0 \text { in } \Omega \\
z=0 \text { on } \Gamma
\end{array}\right.
$$

Dedicated to Jean-Pierre Raymond

Analysis of the Cost Functional

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Analysis of the Cost Functional

Theorem. The functional $J: L^{2}(\Omega) \longrightarrow \mathbb{R}$ is of class C^{2}.

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Analysis of the Cost Functional

Theorem. The functional $J: L^{2}(\Omega) \longrightarrow \mathbb{R}$ is of class C^{2}. Moreover, given $u, v, v_{1}, v_{2} \in L^{2}(\Omega)$ we have

$$
\begin{aligned}
& J^{\prime}(u) v=\int_{\Omega}\left(\varphi_{u}+\nu u\right) v d x \\
& J^{\prime \prime}(u)\left(v_{1}, v_{2}\right)=\int_{\Omega}\left[1-\varphi_{u} \frac{\partial^{2} f}{\partial y^{2}}\left(x, y_{u}\right)\right] z_{v_{1}} z_{v_{2}} d x+\nu \int_{\Omega} v_{1} v_{2} d x
\end{aligned}
$$

where $\varphi_{u} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ is the unique solution of the adjoint equation

$$
\left\{\begin{array}{l}
A^{*} \varphi-\operatorname{div}[b(x) \varphi]+\frac{\partial f}{\partial y}\left(x, y_{u}\right) \varphi=y_{u}-y_{d} \text { in } \Omega \\
\varphi=0 \text { on } \Gamma .
\end{array}\right.
$$

Dedicated to Jean-Pierre Raymond

Local Solutions

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Local Solutions

Definition. We say that $\bar{u} \in \mathcal{U}_{a d}$ is an $L^{r}(\Omega)$-weak local minimum of (P), with $r \in[1,+\infty]$, if there exists some $\varepsilon>0$ such that

$$
J(\bar{u}) \leq J(u) \quad \forall u \in \mathcal{U}_{a d} \text { with }\|\bar{u}-u\|_{L^{r}(\Omega)} \leq \varepsilon .
$$

Dedicated to Jean-Pierre Raymond

Local Solutions

Definition. We say that $\bar{u} \in \mathcal{U}_{a d}$ is an $L^{r}(\Omega)$-weak local minimum of (P), with $r \in[1,+\infty]$, if there exists some $\varepsilon>0$ such that

$$
J(\bar{u}) \leq J(u) \quad \forall u \in \mathcal{U}_{a d} \text { with }\|\bar{u}-u\|_{L^{r}(\Omega)} \leq \varepsilon .
$$

An element $\bar{u} \in \mathcal{U}_{a d}$ is said a strong local minimum of (P) if there exists some $\varepsilon>0$ such that

$$
J(\bar{u}) \leq J(u) \quad \forall u \in \mathcal{U}_{a d} \text { with }\left\|y_{\bar{u}}-y_{u}\right\|_{L^{\infty}(\Omega)} \leq \varepsilon
$$

Dedicated to Jean-Pierre Raymond

Local Solutions

Definition. We say that $\bar{u} \in \mathcal{U}_{a d}$ is an $L^{r}(\Omega)$-weak local minimum of (P), with $r \in[1,+\infty]$, if there exists some $\varepsilon>0$ such that

$$
J(\bar{u}) \leq J(u) \quad \forall u \in \mathcal{U}_{a d} \text { with }\|\bar{u}-u\|_{L^{r}(\Omega)} \leq \varepsilon .
$$

An element $\bar{u} \in \mathcal{U}_{a d}$ is said a strong local minimum of (P) if there exists some $\varepsilon>0$ such that

$$
J(\bar{u}) \leq J(u) \quad \forall u \in \mathcal{U}_{a d} \text { with }\left\|y_{\bar{u}}-y_{u}\right\|_{L^{\infty}(\Omega)} \leq \varepsilon .
$$

We say that $\bar{u} \in \mathcal{U}_{a d}$ is a strict (weak or strong) local minimum if the above inequalities are strict for $u \neq \bar{u}$.

Dedicated to Jean-Pierre Raymond

I - Relationships among these Notions

4
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

I - Relationships among these Notions

- If $\mathcal{U}_{a d}$ is bounded in $L^{2}(\Omega)$, then

University

Dedicated to Jean-Pierre Raymond

I - Relationships among these Notions

- If $\mathcal{U}_{a d}$ is bounded in $L^{2}(\Omega)$, then

1. \bar{u} is an $L^{1}(\Omega)$-weak local minimum of (P) if and only if it is an $L^{r}(\Omega)$-weak local minimum of (P) for every $r \in(1,+\infty)$.

Dedicated to Jean-Pierre Raymond

I - Relationships among these Notions

- If $\mathcal{U}_{a d}$ is bounded in $L^{2}(\Omega)$, then

1. \bar{u} is an $L^{1}(\Omega)$-weak local minimum of (P) if and only if it is an $L^{r}(\Omega)$-weak local minimum of (P) for every $r \in(1,+\infty)$.
2. If \bar{u} is a $L^{r}(\Omega)$-weak local minimum of (P) for some $r<+\infty$, then it is a $L^{\infty}(\Omega)$-weak local minimum of (P).

Dedicated to Jean-Pierre Raymond

I - Relationships among these Notions

- If $\mathcal{U}_{a d}$ is bounded in $L^{2}(\Omega)$, then

1. \bar{u} is an $L^{1}(\Omega)$-weak local minimum of (P) if and only if it is an $L^{r}(\Omega)$-weak local minimum of (P) for every $r \in(1,+\infty)$.
2. If \bar{u} is a $L^{r}(\Omega)$-weak local minimum of (P) for some $r<+\infty$, then it is a $L^{\infty}(\Omega)$-weak local minimum of (P).
3. \bar{u} is a strong local minimum of (P) if and only if it is an $L^{r}(\Omega)$-weak local minimum of (P) for all $r \in[1, \infty)$.

Dedicated to Jean-Pierre Raymond

II - Relationships among these Notions

Dedicated to Jean-Pierre Raymond

II - Relationships among these Notions

- If $\mathcal{U}_{a d}$ is not bounded in $L^{2}(\Omega)$, then

Dedicated to Jean-Pierre Raymond

II - Relationships among these Notions

- If $\mathcal{U}_{a d}$ is not bounded in $L^{2}(\Omega)$, then

1. If \bar{u} is an $L^{2}(\Omega)$-weak local solution, then \bar{u} is an $L^{1}(\Omega)$-weak local solution.

Dedicated to Jean-Pierre Raymond

II - Relationships among these Notions

- If $\mathcal{U}_{a d}$ is not bounded in $L^{2}(\Omega)$, then

1. If \bar{u} is an $L^{2}(\Omega)$-weak local solution, then \bar{u} is an $L^{1}(\Omega)$-weak local solution.
2. If \bar{u} is an $L^{p}(\Omega)$-weak local solution, then \bar{u} is an $L^{q}(\Omega)$-weak local solution for every $p<q \leq \infty$.
of

Dedicated to Jean-Pierre Raymond

II - Relationships among these Notions

- If $\mathcal{U}_{a d}$ is not bounded in $L^{2}(\Omega)$, then

1. If \bar{u} is an $L^{2}(\Omega)$-weak local solution, then \bar{u} is an $L^{1}(\Omega)$-weak local solution.
2. If \bar{u} is an $L^{p}(\Omega)$-weak local solution, then \bar{u} is an $L^{q}(\Omega)$-weak local solution for every $p<q \leq \infty$.
3. \bar{u} is an $L^{2}(\Omega)$-weak local solution if and only if it is a strong local solution.

Dedicated to Jean-Pierre Raymond

First Order Optimality Conditions

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

First Order Optimality Conditions

Theorem. Let \bar{u} be a local solution of (P) in any of the previous senses, then there exist two unique elements $\bar{y}, \bar{\varphi} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
A \bar{y}+b(x) \cdot \nabla \bar{y}+f(x, \bar{y})=\bar{u} \text { in } \Omega, \\
\bar{y}=0 \text { on } \Gamma,
\end{array}\right. \\
& \left\{\begin{array}{l}
A^{*} \bar{\varphi}-\operatorname{div}[b(x) \bar{\varphi}]+\frac{\partial f}{\partial y}(x, \bar{y}) \bar{\varphi}=\bar{y}-y_{d} \text { in } \Omega, \\
\bar{\varphi}=0 \text { on } \Gamma,
\end{array}\right. \\
& \int_{\Omega}(\bar{\varphi}+\nu \bar{u})(u-\bar{u}) d x \geq 0 \quad \forall u \in \mathcal{U}_{a d}
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

First Order Optimality Conditions

Theorem. Let \bar{u} be a local solution of (P) in any of the previous senses, then there exist two unique elements $\bar{y}, \bar{\varphi} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
A \bar{y}+b(x) \cdot \nabla \bar{y}+f(x, \bar{y})=\bar{u} \text { in } \Omega, \\
\bar{y}=0 \text { on } \Gamma,
\end{array}\right. \\
& \left\{\begin{array}{l}
A^{*} \bar{\varphi}-\operatorname{div}[b(x) \bar{\varphi}]+\frac{\partial f}{\partial y}(x, \bar{y}) \bar{\varphi}=\bar{y}-y_{d} \text { in } \Omega, \\
\bar{\varphi}=0 \text { on } \Gamma,
\end{array}\right. \\
& \int_{\Omega}(\bar{\varphi}+\nu \bar{u})(u-\bar{u}) d x \geq 0 \quad \forall u \in \mathcal{U}_{a d}
\end{aligned}
$$

Moreover, $\bar{u} \in H^{1}(\Omega) \cap C(\bar{\Omega})$ holds.

Second Order Conditions

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Second Order Conditions

-Cone of critical directions:

$$
C_{\bar{u}}=\left\{v \in L^{2}(\Omega): J^{\prime}(\bar{u}) v=0 \text { and } v(x)\left\{\begin{array}{l}
\geq 0 \text { if } \bar{u}(x)=\alpha \\
\leq 0 \text { if } \bar{u}(x)=\beta
\end{array}\right\}\right.
$$

University of Cantabria

$\$ 4$
$\$$
4
Back
Close

Dedicated to Jean-Pierre Raymond

Second Order Conditions

-Cone of critical directions:

$$
C_{\bar{u}}=\left\{v \in L^{2}(\Omega): J^{\prime}(\bar{u}) v=0 \text { and } v(x)\left\{\begin{array}{l}
\geq 0 \text { if } \bar{u}(x)=\alpha \\
\leq 0 \text { if } \bar{u}(x)=\beta
\end{array}\right\}\right.
$$

Theorem If \bar{u} is a local minimum of (P), then $J^{\prime \prime}(\bar{u}) v^{2} \geq 0 \forall v \in C_{\bar{u}}$.

Dedicated to Jean-Pierre Raymond

Second Order Conditions

-Cone of critical directions:

$$
C_{\bar{u}}=\left\{v \in L^{2}(\Omega): J^{\prime}(\bar{u}) v=0 \text { and } v(x)\left\{\begin{array}{l}
\geq 0 \text { if } \bar{u}(x)=\alpha \\
\leq 0 \text { if } \bar{u}(x)=\beta
\end{array}\right\}\right.
$$

Theorem If \bar{u} is a local minimum of (P), then $J^{\prime \prime}(\bar{u}) v^{2} \geq 0 \forall v \in C_{\bar{u}}$. Conversely, if $\bar{u} \in \mathcal{U}_{a d}$ satisfies the first order optimality conditions and $J^{\prime \prime}(\bar{u}) v^{2}>0 \forall v \in C_{\bar{u}} \backslash\{0\}$, then there exist $\varepsilon>0$ and $\kappa>0$ such that

$$
J(\bar{u})+\frac{\kappa}{2}\|u-\bar{u}\|_{2}^{2} \leq J(u) \quad \forall u \in \mathcal{U}_{a d}:\left\|y_{u}-\bar{y}\right\|_{L^{\infty}(Q)} \leq \varepsilon
$$

Dedicated to Jean-Pierre Raymond

Second Order Conditions

-Cone of critical directions:

$$
C_{\bar{u}}=\left\{v \in L^{2}(\Omega): J^{\prime}(\bar{u}) v=0 \text { and } v(x)\left\{\begin{array}{l}
\geq 0 \text { if } \bar{u}(x)=\alpha \\
\leq 0 \text { if } \bar{u}(x)=\beta
\end{array}\right\}\right.
$$

Theorem If \bar{u} is a local minimum of (P), then $J^{\prime \prime}(\bar{u}) v^{2} \geq 0 \forall v \in C_{\bar{u}}$. Conversely, if $\bar{u} \in \mathcal{U}_{a d}$ satisfies the first order optimality conditions and $J^{\prime \prime}(\bar{u}) v^{2}>0 \forall v \in C_{\bar{u}} \backslash\{0\}$, then there exist $\varepsilon>0$ and $\kappa>0$ such that

$$
J(\bar{u})+\frac{\kappa}{2}\|u-\bar{u}\|_{2}^{2} \leq J(u) \quad \forall u \in \mathcal{U}_{a d}:\left\|y_{u}-\bar{y}\right\|_{L^{\infty}(Q)} \leq \varepsilon
$$

Theorem Let $\bar{u} \in \mathcal{U}_{a d}$. Then $J^{\prime \prime}(\bar{u}) v^{2}>0 \forall v \in C_{\bar{u}} \backslash\{0\}$ if and only if there exists $\delta>0$ such that $J^{\prime \prime}(\bar{u}) v^{2} \geq \delta\|v\|_{L^{2}(\Omega)}^{2} \forall v \in C_{\bar{u}}$.

Dedicated to Jean-Pierre Raymond

Approximation of the state equation

$\mathbf{~} 4$
Δ
$\mathbf{~}$
\downarrow
Back
Close

Dedicated to Jean-Pierre Raymond

Approximation of the state equation

- We consider a quasi-uniform family of triangulations $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$.

Dedicated to Jean-Pierre Raymond

Approximation of the state equation

- We consider a quasi-uniform family of triangulations $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$.

$$
Y_{h}=\left\{y_{h} \in C(\bar{\Omega}): y_{h \mid T} \in P_{1}(T) \forall T \in \mathcal{T}_{h} \text { and } y_{h} \equiv 0 \text { on } \Gamma\right\} .
$$

Dedicated to Jean-Pierre Raymond

Approximation of the state equation

- We consider a quasi-uniform family of triangulations $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$.

$$
Y_{h}=\left\{y_{h} \in C(\bar{\Omega}): y_{h \mid T} \in P_{1}(T) \forall T \in \mathcal{T}_{h} \text { and } y_{h} \equiv 0 \text { on } \Gamma\right\} .
$$

$$
\begin{aligned}
& a\left(y_{1}, y_{2}\right)=\left\langle\mathcal{A} y_{1}, y_{2}\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} \\
& =\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j}(x) \partial_{x_{i}} y_{1} \partial_{x_{j}} y_{2}+\left[b(x) \cdot \nabla y_{1}\right] y_{2}\right) d x .
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

Approximation of the state equation

- We consider a quasi-uniform family of triangulations $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$.

$$
Y_{h}=\left\{y_{h} \in C(\bar{\Omega}): y_{h \mid T} \in P_{1}(T) \forall T \in \mathcal{T}_{h} \text { and } y_{h} \equiv 0 \text { on } \Gamma\right\} .
$$

$$
\begin{aligned}
& a\left(y_{1}, y_{2}\right)=\left\langle\mathcal{A} y_{1}, y_{2}\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} \\
& =\int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j}(x) \partial_{x_{i}} y_{1} \partial_{x_{j}} y_{2}+\left[b(x) \cdot \nabla y_{1}\right] y_{2}\right) d x
\end{aligned}
$$

Find $y_{h} \in Y_{h}$ such that
$a\left(y_{h}, z_{h}\right)+\int_{\Omega} f\left(x, y_{h}(x)\right) z_{h}(x) d x=\int_{\Omega} u(x) z_{h}(x) d x \quad \forall z_{h} \in Y_{h}$.

Dedicated to Jean-Pierre Raymond

Numerical Analysis of the Linear Equation

$\mathbf{~} 4$
Δ
$\mathbf{~}$
\downarrow
Back
Close

Dedicated to Jean-Pierre Raymond

Numerical Analysis of the Linear Equa-

 tionTheorem [Schatz, 1974]. Let $a_{0} \in L^{2}(\Omega)$ be a nonnegative function. There exists $h_{\mathcal{A}}>0$ depending on \mathcal{A} and $\left\|a_{0}\right\|_{L^{2}(\Omega)}$ such that the variational problem

$$
\left\{\begin{array}{l}
\text { Find } y_{h} \in Y_{h} \text { such that } \\
a\left(y_{h}, z_{h}\right)+\int_{\Omega} a_{0}(x) y_{h}(x) z_{h}(x) d x=\int_{\Omega} u(x) z_{h}(x) d x \forall z_{h} \in Y_{h}
\end{array}\right.
$$

has a unique solution for every $h \leq h_{\mathcal{A}}$ and for every $u \in L^{2}(\Omega)$. Moreover, there exists a constant $C_{\mathcal{A}, a_{0}}$ such that

$$
\left\|y_{h}\right\|_{H_{0}^{1}(\Omega)} \leq C_{\mathcal{A}, a_{0}}\left\|\mathcal{A}^{-1} u\right\|_{H_{0}^{1}(\Omega)} \quad \forall h \leq h_{\mathcal{A}} .
$$

Dedicated to Jean-Pierre Raymond

Numerical Analysis of the Semilinear EquāuC tion

University of Cantabria

Dedicated to Jean-Pierre Raymond

Numerical Analysis of the Semilinear EquāuC

 tionTheorem. Let us assume that

$$
\left\{\begin{array}{l}
f(\cdot, 0) \in L^{2}(\Omega) \text { and } \forall M>0 \exists L_{f, M} \text { such that } \\
\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq L_{f, M}\left|y_{2}-y_{1}\right| \forall\left|y_{i}\right| \leq M, i=1,2 .
\end{array}\right.
$$

University of Cantabria

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Numerical Analysis of the Semilinear Equa

 tionTheorem. Let us assume that

$$
\left\{\begin{array}{l}
f(\cdot, 0) \in L^{2}(\Omega) \text { and } \forall M>0 \exists L_{f, M} \text { such that } \\
\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq L_{f, M}\left|y_{2}-y_{1}\right| \forall\left|y_{i}\right| \leq M, i=1,2
\end{array}\right.
$$

$\forall M \geq 1+\|y\|_{C(\bar{\Omega})} \exists h_{M}>0$ such that for every $h<h_{M}$ the discrete equation has a unique solution y_{h} satisfying $\left\|y_{h}\right\|_{C(\bar{\Omega})} \leq M$.

Dedicated to Jean-Pierre Raymond

Numerical Analysis of the Semilinear Equ

 tionTheorem. Let us assume that

$$
\left\{\begin{array}{l}
f(\cdot, 0) \in L^{2}(\Omega) \text { and } \forall M>0 \exists L_{f, M} \text { such that } \\
\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq L_{f, M}\left|y_{2}-y_{1}\right| \forall\left|y_{i}\right| \leq M, i=1,2 .
\end{array}\right.
$$

$\forall M \geq 1+\|y\|_{C(\bar{\Omega})} \exists h_{M}>0$ such that for every $h<h_{M}$ the discrete equation has a unique solution y_{h} satisfying $\left\|y_{h}\right\|_{C(\bar{\Omega})} \leq M$. Moreover, there exist constants K_{M} and $K_{\infty, M}$ independent of u such that

$$
\begin{aligned}
& \left\|y-y_{h}\right\|_{L^{2}(\Omega)}+h\left\|y-y_{h}\right\|_{H_{0}^{1}(\Omega)} \leq K_{M}\left(\|u\|_{L^{2}(\Omega)}+1\right) h^{2} \\
& \left\|y-y_{h}\right\|_{L^{\infty}(\Omega)} \leq K_{\infty, M}\left(\|u\|_{L^{2}(\Omega)}+1\right) h^{2-\frac{n}{2}}
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

Numerical Analysis of the Semilinear Equ

 tionTheorem. Let us assume that

$$
\left\{\begin{array}{l}
f(\cdot, 0) \in L^{2}(\Omega) \text { and } \forall M>0 \exists L_{f, M} \text { such that } \\
\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq L_{f, M}\left|y_{2}-y_{1}\right| \forall\left|y_{i}\right| \leq M, i=1,2 .
\end{array}\right.
$$

$\forall M \geq 1+\|y\|_{C(\bar{\Omega})} \exists h_{M}>0$ such that for every $h<h_{M}$ the discrete equation has a unique solution y_{h} satisfying $\left\|y_{h}\right\|_{C(\bar{\Omega})} \leq M$. Moreover, there exist constants K_{M} and $K_{\infty, M}$ independent of u such that

$$
\begin{aligned}
& \left\|y-y_{h}\right\|_{L^{2}(\Omega)}+h\left\|y-y_{h}\right\|_{H_{0}^{1}(\Omega)} \leq K_{M}\left(\|u\|_{L^{2}(\Omega)}+1\right) h^{2} \\
& \left\|y-y_{h}\right\|_{L^{\infty}(\Omega)} \leq K_{\infty, M}\left(\|u\|_{L^{2}(\Omega)}+1\right) h^{2-\frac{n}{2}}
\end{aligned}
$$

Further, if there exist other solutions $\left\{\tilde{y}_{h}\right\}_{h<h_{M}}$ with $y_{h} \neq \tilde{y}_{h}$ for all h, then $\lim _{h \rightarrow 0}\left\|\tilde{y}_{h}\right\|_{C(\bar{\Omega})}=\infty$.

Dedicated to Jean-Pierre Raymond

A Discrete Mapping $u_{h} \rightarrow y_{h}$

4
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

A Discrete Mapping $u_{h} \rightarrow y_{h}$

Theorem. Let $\bar{y} \in Y$ be the solution of state equation corresponding to the control $\bar{u} \in L^{2}(\Omega)$. Given $\rho>0$ arbitrary, there exist $\rho^{*}>0$ and $h_{0}>0$ such that the discrete equation has a unique solution $y_{h}(u) \in$ $\bar{B}_{\rho^{*}}^{Y}(\bar{y})$ for every $u \in \bar{B}_{\rho}(\bar{u}) \subset L^{2}(\Omega)$ and for all $h<h_{0}$, where

$$
B_{\rho^{*}}^{Y}(\bar{y})=\left\{y \in Y:\|y-\bar{y}\|_{Y} \leq \rho^{*}\right\} .
$$

Furthermore, there exist constants K and K_{∞} such that

$$
\begin{aligned}
& \left\|y_{u}-y_{h}(u)\right\|_{L^{2}(\Omega)}+h\left\|y_{u}-y_{h}(u)\right\|_{H_{0}^{1}(\Omega)} \leq K\left(\|\bar{u}\|_{L^{2}(\Omega)}+\rho+1\right) h^{2} \\
& \left\|y_{u}-y_{h}(u)\right\|_{L^{\infty}(\Omega)} \leq K_{\infty}\left(\|\bar{u}\|_{L^{2}(\Omega)}+\rho+1\right) h^{2-\frac{n}{2}} \forall u \in \bar{B} \rho(\bar{u})
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

Numerical Approximation of (P)

1
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Numerical Approximation of (P)

- Let us define $\mathcal{J}: L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow \mathbb{R}$ given by

$$
\mathcal{J}(y, u)=\frac{1}{2} \int_{\Omega}\left(y(x)-y_{d}(x)\right)^{2} d x+\frac{\nu}{2} \int_{\Omega} u^{2} d x
$$

Dedicated to Jean-Pierre Raymond

Numerical Approximation of (P)

- Let us define $\mathcal{J}: L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow \mathbb{R}$ given by

$$
\mathcal{J}(y, u)=\frac{1}{2} \int_{\Omega}\left(y(x)-y_{d}(x)\right)^{2} d x+\frac{\nu}{2} \int_{\Omega} u^{2} d x
$$

- Let us denote by \mathcal{U}_{h} one of the following two spaces:

$$
\begin{aligned}
& \mathcal{U}_{h}=\mathcal{U}_{h}^{0}:=\left\{u_{h} \in L^{2}(\Omega): u_{h \mid T} \in P_{0}(T) \forall T \in \mathcal{T}_{h}\right\} \\
& \mathcal{U}_{h}=\mathcal{U}_{h}^{1}:=\left\{u_{h} \in C(\bar{\Omega}): u_{h \mid T} \in P_{1}(T) \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Dedicated to Jean-Pierre Raymond

Numerical Approximation of (P)

- Let us define $\mathcal{J}: L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow \mathbb{R}$ given by

$$
\mathcal{J}(y, u)=\frac{1}{2} \int_{\Omega}\left(y(x)-y_{d}(x)\right)^{2} d x+\frac{\nu}{2} \int_{\Omega} u^{2} d x
$$

- Let us denote by \mathcal{U}_{h} one of the following two spaces:

$$
\begin{aligned}
& \mathcal{U}_{h}=\mathcal{U}_{h}^{0}:=\left\{u_{h} \in L^{2}(\Omega): u_{h \mid T} \in P_{0}(T) \forall T \in \mathcal{T}_{h}\right\} \\
& \mathcal{U}_{h}=\mathcal{U}_{h}^{1}:=\left\{u_{h} \in C(\bar{\Omega}): u_{h \mid T} \in P_{1}(T) \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

- We set $\mathcal{U}_{h, a d}=\mathcal{U}_{h} \cap \mathcal{U}_{a d}$.
- We approximate Problem (P) by the problem
$\left(\mathcal{P}_{h}\right) \min \left\{\mathcal{J}\left(y_{h}, u_{h}\right):\left(y_{h}, u_{h}\right) \in Y_{h} \times \mathcal{U}_{h, a d}\right.$ satisfies the discrete equation $\}$

Dedicated to Jean-Pierre Raymond

Convergence of $\left(\mathcal{P}_{h}\right)$ to (P)

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Convergence of $\left(\mathcal{P}_{h}\right)$ to (P)

Theorem. There exists $h_{0}>0$ such that problem $\left(\mathcal{P}_{h}\right)$ has at least one solution $\left(\bar{y}_{h}, \bar{u}_{h}\right)$ for all $h<h_{0}$.

Dedicated to Jean-Pierre Raymond

Convergence of $\left(\mathcal{P}_{h}\right)$ to (P)

Theorem. There exists $h_{0}>0$ such that problem $\left(\mathcal{P}_{h}\right)$ has at least one solution $\left(\bar{y}_{h}, \bar{u}_{h}\right)$ for all $h<h_{0}$. Moreover, if $\left\{\left(\bar{y}_{h}, \bar{u}_{h}\right)\right\}_{h<h_{0}}$ is a sequence of solutions of problems $\left(\mathcal{P}_{h}\right)$, then it is bounded in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and there exist subsequences converging weakly in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

Dedicated to Jean-Pierre Raymond

Convergence of $\left(\mathcal{P}_{h}\right)$ to (P)

Theorem. There exists $h_{0}>0$ such that problem $\left(\mathcal{P}_{h}\right)$ has at least one solution $\left(\bar{y}_{h}, \bar{u}_{h}\right)$ for all $h<h_{0}$. Moreover, if $\left\{\left(\bar{y}_{h}, \bar{u}_{h}\right)\right\}_{h<h_{0}}$ is a sequence of solutions of problems $\left(\mathcal{P}_{h}\right)$, then it is bounded in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and there exist subsequences converging weakly in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$. In addition, if a subsequence, denoted in the same way, satisfies that $\left(\bar{y}_{h}, \bar{u}_{h}\right) \rightharpoonup(\bar{y}, \bar{u})$ in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ as $h \rightarrow 0$, then $(\bar{y}, \bar{u}) \in Y \times \mathcal{U}_{a d}, \bar{u}$ is a solution of (P) with associated stated \bar{y}, and $\left(\bar{y}_{h}, \bar{u}_{h}\right) \rightarrow(\bar{y}, \bar{u})$ strongly in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

Error Estimates

44
-
4
-
Back
Close

Dedicated to Jean-Pierre Raymond

Error Estimates

Theorem. Let $\bar{u} \in L^{2}(\Omega)$ be a local minimizer of (P) satisfying the sufficient second order optimality conditions and let $\left\{\bar{u}_{h}\right\}$ be the sequence of minimizers of the problems $\left(\mathcal{P}_{h}\right)$ described in the above theorem. Then, there exists $h_{0}>0$ such that

- If $\mathcal{U}_{a d} \subsetneq L^{2}(\Omega)$, then

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{L^{2}(\Omega)} \leq C h . \quad \forall h<h_{0}
$$

Dedicated to Jean-Pierre Raymond

Error Estimates

Theorem. Let $\bar{u} \in L^{2}(\Omega)$ be a local minimizer of (P) satisfying the sufficient second order optimality conditions and let $\left\{\bar{u}_{h}\right\}$ be the sequence of minimizers of the problems $\left(\mathcal{P}_{h}\right)$ described in the above theorem. Then, there exists $h_{0}>0$ such that

- If $\mathcal{U}_{a d} \subsetneq L^{2}(\Omega)$, then

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{L^{2}(\Omega)} \leq C h . \quad \forall h<h_{0}
$$

- If $\mathcal{U}_{a d}=L^{2}(\Omega)$ and $\mathcal{U}_{h}=\mathcal{U}_{h}^{i}, i=0,1$, then

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{L^{2}(\Omega)} \leq C h^{1+i} \quad \forall h<h_{0}
$$

Dedicated to Jean-Pierre Raymond

THANK YOU VERY MUCH FOR YOUR ATTENTION

