Controllability of the Wave Equation with Rough Coefficients

Part I¹

Belhassen DEHMAN²

Conference in Honor of Jean Pierre RAYMOND

Toulouse, September 2019

¹Joint works with N. Burq (Univ. Paris Sud), J. Le Rousseau (Univ. Paris 13) and S. Ervedoza (Univ. Paul Sabatier, Toulouse) ²Faculté des Sciences de Tunis & Enit-Lamsin

(W)
$$\begin{cases} \partial_t^2 u - \Delta_x u = 0 \quad \text{in} \quad]0, +\infty[\times M] \\ (u(0), \partial_t u(0)) = (u_0, u_1) \in H^1 \times L^2 \end{cases}$$

- M Riemannian manifold, connected, compact, without boundary, with dimension d.
- *M* = Ω open subset of ℝ^d, connected, bounded, with "smooth" boundary (homogeneous Dirichlet condition).

$$H = C([0, +\infty[, H^1) \cap C^1([0, +\infty[, L^2)$$

 \longrightarrow Consider ω an open subset of M and Γ an open subset of $\partial\Omega$ and also a time T > 0.

The Goal

Provide internal or boundary exact control results in the case of **non smooth metrics**.

Given (u_0, u_1) , find a control vector f (resp. g) s.t the solution of

$$\begin{cases} \partial_t^2 u - \Delta_x u = \chi_\omega f \\ (u(0), \partial_t u(0)) = (u_0, u_1) \end{cases}$$

resp.

$$\begin{cases} \partial_t^2 u - \Delta_x u = 0\\ u = \chi_{\Gamma} g \quad \text{on} \quad \partial\Omega\\ (u(0), \partial_t u(0)) = (u_0, u_1) \end{cases}$$

satisfies $u(T) = \partial_t u(T) = 0$.

Tool: By HUM , we need an observability estimate for the wave equation (W).

イロト 不得 トイヨト イヨト 二日

Boundary observation

$$Eu(0) \le c \int_0^T \int_{\Gamma} \left| \frac{\partial u}{\partial n}(t,x) \right|^2 d\sigma dt$$

Remark: The converse is "always" true :

$$\int_0^T \int_{\partial\Omega} \left| \frac{\partial u}{\partial n}(t, x) \right|^2 d\sigma dt \le c \, Eu(0)$$

 \rightarrow Hidden regularity.

Internal observation

$$Eu(0) \le c \int_0^T \int_\omega |\partial_t u(t,x)|^2 dx dt$$
 (O)

Or at least

$$Eu(0) \le c \int_0^T \int_{\omega} |\partial_t u(t,x)|^2 dx dt + c ||(u_0,u_1)||^2_{L^2(M) \times H^{-1}(M)}$$
(RO)

 \rightarrow unique continuation property....

Or either observation with loss

$$Eu(0) \le c||u||^2_{H^m((0,T)\times\omega)}, \qquad m>1$$

Remark : If M is a compact manifold without boundary, we consider instead the Klein-Gordon equation

$$\partial_t^2 u - \Delta_x u + u = 0$$

臣▶ ★ 臣▶ -

\rightarrow Exact controllability (HUM)

\rightarrow Stabilization

$$Eu(t) \leq C \exp^{-\gamma t} Eu(0)$$

for solutions of the damped equation

$$\partial_t^2 u - \Delta_x u + a(x)\partial_t u = 0$$

\rightarrow Inverse problems

Stability results,

伺 ト イヨト イヨト

State of the art

- 80' : Observability estimates under the Γ -condition of J.L. Lions. \rightarrow Metric of class C^1 .
 - \rightarrow Multiplier techniques.
- 90': Microlocal conditions and microlocal tools (Rauch and Taylor, Bardos, Lebeau and Rauch, Burq and Gérard).
 The geometric control condition (G.C.C) : a microlocal condition, stated in the cotangent bundle (of Melrose-Sjostrand).

 \rightarrow Microlocal and pseudo-differential techniques : propagation of wave front sets and supports of microlocal defect measures. \rightarrow The condition is optimal but..... a priori needs smooth metric and smooth boundary.

• 97' N. Burq : Boundary observability: C^2 -metric and C^3 -boundary.

Geometric Control Condition I

The couple (ω, T) satisfies the geometric control condition (G.C.C), if every geodesic of Ω issued at t = 0 and travelling with speed 1, enters in ω before the time T.

Geometric Control Condition II

The couple (Γ , T) satisfies the geometric control condition (G.C.C), if every generalized bicharacteristic of the wave symbol, issued at t = 0, intersects the boundary subset Γ at a nondiffractive point, before the time T. a(x) is resp. Zygmund or Log-Zygmund continuous function if

$$|h| < 1,$$

$$\begin{cases} |a(x+h) + a(x-h) - 2a(x)| \le K|h| \\ |a(x+h) + a(x-h) - 2a(x)| \le K|h|(1 - Log|h|) \end{cases}$$

For $0 < \alpha < 1$,

$$W^{1,\infty} = Lip \subset Z = C^1_* \subset LL \subset LZ \subset C^{lpha}$$

▶ ▲ 돌 ▶ ▲ 돌 ▶

The OL theorem of Fanelli-Zuazua (2014)

1-D setting,
$$\Omega =]0, 1[, a(x)\partial_t^2 u - \partial_x^2 u = 0.$$

Theorem (Fanelli - Zuazua 1)

Assume $a(x) \in Z$, then for $T > T_a$, there exists C > 0 s.t

$$Eu(0) \le C \int_0^T |\partial_x u(t,0)|^2 dt \tag{1}$$

Theorem (Fanelli - Zuazua 2)

Assume $a(x) \in LZ$ and denote $D_a f = a(x)^{-1} \partial_x^2 f$. Then for $T > T_a$, there exist C > 0 and $m \in \mathbb{N}$ s.t

$$Eu(0) \le C \int_0^T |\partial_t^m \partial_x u(t,0)|^2 dt$$
(2)

for all initial data $(u_0, u_1) \in (H^{2m+1} \cap H^1_0) \times H^{2m}$ satisfying $D^m_a u_0 \in H^1 \qquad D^m_a u_1 \in L^2$

Comments

- Classical boundary observation in Th. 1 and boundary observation with loss in Th. 2.
- For a(x) worse that LZ, infinite loss of derivatives : No Observability !
 See also the counter-example of Castro - Zuazua (03').
- Proof: 1-dimensional technique: the sidewise energy estimates, i.e hyperbolic energy estimates by interchanging time ←→ space.
 (Colombini, Spagnolo, Lerner, Métivier, Fanelli....)
- 1-D geometry: all characteristic rays reach the boundary in uniform time.

Comments

- Classical boundary observation in Th. 1 and boundary observation with loss in Th. 2.
- For a(x) worse that LZ, infinite loss of derivatives : No Observability !
 See also the counter-example of Castro - Zuazua (03').
- Proof: 1-dimensional technique: the sidewise energy estimates, i.e hyperbolic energy estimates by interchanging time ←→ space.
 (Colombini, Spagnolo, Lerner, Métivier, Fanelli....)
- 1-D geometry: all characteristic rays reach the boundary in uniform time.
- Question: What about dimensions higher than 1, where geometry is more evolved ???

Case of a continuous density a(x) in \mathbb{R}^d

(W)
$$\begin{cases} a(x)\partial_t^2 u - \Delta_x u = 0 & \text{in } (0, T) \times \Omega, \\ u = 0 & \text{on } (0, T) \times \partial\Omega, \\ (u(0), \partial_t u(0)) \in H_0^1 \times L^2 \end{cases}$$

Assumption : There exists $\alpha \in (0, 2]$, s.t

 $x \cdot \nabla a(x) + (2 - \alpha)a(x) \ge 0$ in the sense of $\mathcal{D}'(\mathbb{R}^d)$.

$$\forall \varphi \in D(\mathbb{R}^d), \text{ with } \varphi \geq 0, \quad \int_{\mathbb{R}^d} a(x) \left(-div(x\varphi(x)) + (2-\alpha)\varphi(x) \right) \, dx \geq 0$$

《曰》《聞》《臣》《臣》

Observation region

ω an open neighborhood (in Ω) of an open subset Γ of the boundary satisfying the multiplier condition, i.e

$$\{x \in \partial \Omega, \text{ such that } x \cdot n_x > 0\} \subset \Gamma,$$

Let $R = sup\{|x|, x \in \Omega\}$ and $a_1 = sup\{a(x), x \in \overline{\Omega}\}$

Theorem (D-Ervedoza 17')

For $\alpha T > 4R\sqrt{a_1}$, there exists a constant C > 0 s.t the observability estimate

$$Eu(0) \leq C \int_0^T \int_{\omega} |\partial_t u(t,x)|^2 dx dt$$

holds true for every solution of (W).

Examples

- One can take $a(x) = a(r, \theta) = f(r)g(\theta)$ with f, g positive continuous, and $f'(r) \ge 0$ in the sense of distributions.
 - \rightarrow Allows highly oscillating function $g(\theta)$.

•
$$\Omega = B(0,R) \setminus B(0,R_1), \quad 0 < R_1 < R$$
, and $a(x) = 1/r^2.$

Take
$$x_0\in\Omega,\,\xi_0
eq0,\,x_0.\xi_0=$$
0, and $au_0=|x_0||\xi_0|$

The ray $\gamma(s)$ issued from $(0, x_0, \tau_0, \xi_0)$ satisfies

$$rac{d^2}{ds^2}\left(|x(s)|^2
ight)=0 \quad ext{and} \quad rac{d}{ds}\left(|x(s)|^2
ight)\Big|_{s=0}=0$$

 $\rightarrow |x(s)| = |x_0|$ Captive ray !

Denote $A(x) = (a_{ij}(x))$, $d \times d$ symmetric definite positive matrix, and κ a real valued function, $\kappa(x) > 0$ (a density).

Denote $\mathcal{A}=(\mathcal{A},\kappa)$,

$$\Delta_{\mathcal{A}} = rac{1}{\kappa(x)} \sum_{ij} \partial_j \mathsf{a}_{ij}(x) \kappa(x) \partial_i$$

and consider the wave operator

$$P_{\mathcal{A}} = \partial_t^2 - \Delta_{\mathcal{A}}$$

▲口 > ▲聞 > ▲臣 > ▲臣 > ― 臣

Theorem (Burq-D-Le Rousseau 19')

Assume that $\mathcal{A} = (\mathcal{A}, \kappa)$ is smooth and that (ω, T) (resp. (Γ, T)) satisfies (GCC) for $P_{\mathcal{A}}$. Take $\mathcal{B} \in \mathcal{U}_{\varepsilon}$, an ε -neighborhood of \mathcal{A} in $W^{1,\infty}$. Then for ε small enough, the (classical) observability estimate holds true

$$Eu(0) \le c \int_0^T \int_{\omega} |\partial_t u(t,x)|^2 \kappa dx dt \quad \left(\text{resp.} \int_0^T \int_{\Gamma} \left| \frac{\partial u}{\partial n}(t,x) \right|^2 \kappa d\sigma dt \right)$$

for every solution of

$$P_{\mathcal{B}}u = \partial_t^2 u - \Delta_{\mathcal{B}}u = 0, \qquad u_{|\partial\Omega} = 0$$

Corollary

Under conditions above, we get exact controllability for $P_{\mathcal{B}} = \partial_t^2 - \Delta_{\mathcal{B}}$, in time T.

Comments

- \rightarrow No geometry setting for the metric *B* !!!
- \rightarrow One can replace Eu(0) by $E_Bu(0)$.

 \to One can also consider the same problem on a perturbed domain $\Omega_{\varepsilon},$ with $W^{2,\infty}$ perturbation.

metric $A \longrightarrow B = A_{\varepsilon}$ $W^{1,\infty}$ ε – perturbation domain $\Omega \longrightarrow \Omega_{\varepsilon}$ $W^{2,\infty}$ ε – perturbation \rightarrow For a given metric $B \in W^{1,\infty}$, we cannot decide if $P_{\mathcal{B}}$ is observable or not.

In particular, what happens for $B \in C^1$ and $\partial \Omega$ of class C^2 ???

Next lecture by Jérôme !

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Behavior of the HUM control process

$$(W) \quad \begin{cases} \partial_t^2 u - \Delta_{\mathcal{A}} u = \chi_{\omega}^2(x) f & \text{in} \quad]0, T[\times \Omega] \\ u = 0 & \text{on} \quad]0, T[\times \partial \Omega] \\ (u(0), \partial_t u(0)) = (u_0, u_1) \in H_0^1 \times L^2 \end{cases}$$

We look for $f \in L^2(]0, T[\times \Omega)$, s.t

$$(u(T),\partial_t u(T))=(0,0)$$

By HUM and under (G.C.C), we can take f solution of

$$(W') \quad \begin{cases} \partial_t^2 f - \Delta_{\mathcal{A}} f = 0 & \text{in} &]0, T[\times \Omega] \\ f = 0 & \text{on} &]0, T[\times \partial \Omega] \\ (f(0), \partial_t f(0)) = (f_0, f_1) \in L^2 \times H^{-1} \end{cases}$$

The map

$$\left\{ \begin{array}{l} \Lambda: H_0^1 \times L^2 \to L^2 \times H^{-1} \\ \\ (u_0, u_1) \to (f_0, f_1) \end{array} \right.$$

is an isomorphism; this is HUM optimal control operator.

Denote by f_A the HUM control attached to P_A , i.e the solution of (W').

・ロト ・四ト ・ヨト ・ヨト

Theorem (D-Lebeau, 2009)

In the setting above and under (G.C.C), a) For all $s \ge 0$, $\Lambda : H^{s+1} \times H^s \to H^s \times H^{s-1}$

is an isomorphism.

b) $\left\| \Lambda \psi(2^{-k}D) - \psi(2^{-k}D) \Lambda \right\| \leq C 2^{-k/2}$

c) If M is a Riemannian manifold without boundary, Λ is a pseudo differential operator.

Behavior of the HUM control process

Let $\mathcal{A} = (\mathcal{A}, \kappa)$ be smooth (C^2) and such that (ω, T) satisfies (GCC).

Theorem (Burq-D-Le Rousseau 19')

For any C²- neighborhood \mathcal{U} of \mathcal{A} , there exist $\mathcal{A}' \in \mathcal{U}$ and an initial data (u_0, u_1) , $||(\nabla_{\mathcal{A}} u_0, u_1)||_{L^2 \times L^2} = 1$, s.t the respective solutions u and v of

$$\begin{cases} \partial_t^2 u - \Delta_{\mathcal{A}} u = \chi_{\omega}^2(x) f_{\mathcal{A}} \\\\ \partial_t^2 v - \Delta_{\mathcal{A}'} v = \chi_{\omega}^2(x) f_{\mathcal{A}} \\\\ (u(0), \partial_t u(0)) = (v(0), \partial_t v(0)) = (u_0, u_1) \in H_0^1 \times L^2 \end{cases}$$

satisfy

$$E_A(u-v)(T) = E_A(v)(T) \ge 1/2$$

Moreover,

$$||f_{\mathcal{A}} - f_{\mathcal{A}'}||_{L^2((0,T) imes \omega)} \ge 1/\sqrt{8T}$$

Remarks

- (GCC) also satisfied by (ω, T) for the metric \mathcal{A}' .
 - $\rightarrow f_{\mathcal{A}'}$ is well defined.
- For fixed initial data, the map

$$(\mathcal{C}^2(\Omega))^{d^2+1} \longrightarrow L^2((0,T) \times \omega)$$

 $\mathcal{A} = (\mathcal{A},\kappa) \longrightarrow f_{\mathcal{A}}$

is not continuous.

Proof

 \rightarrow Choose $A' = (1 + \varepsilon)A$

 \rightarrow Take a sequence (u_0^k, u_1^k) such that $||(\nabla u_0^k, u_1^k)||_{L^2 \times L^2} = 1$ and $(u_0^k, u_1^k) \rightharpoonup (0, 0)$ in $H_0^1 \times L^2$,

 $\rightarrow f_{\mathcal{A}}^{k} \rightarrow 0 \text{ in } L^{2}((0,T) \times \Omega). \text{ Hence } f_{\mathcal{A}}^{k} \rightarrow 0 \text{ in } H^{-1}((0,T) \times \Omega) \\ \text{and } \operatorname{supp} \mu(f_{\mathcal{A}}^{k}) \subset Char(\partial_{t}^{2} - \Delta_{\mathcal{A}}) = \{\tau^{2} - A_{x}(\xi,\xi) = 0\}.$

$$\rightarrow \quad \mathsf{supp}\mu(\mathsf{v}^k) \subset \mathit{Char}(\partial_t^2 - \Delta_{\mathcal{A}'}) = \{\tau^2 - A_x'(\xi,\xi) = 0\}$$

$$E_{\mathcal{A}'}(v^k)(T) - E_{\mathcal{A}'}(v^k)(0) = 2\int_0^T\int_\Omega \chi^2_\omega(x) f^k_{\mathcal{A}}\partial_t v^k \, dx dt \longrightarrow 0.$$

On the other hand, decompose this function v as $v = v_1 + v_2$ where

$$\begin{cases} \Box_{\mathcal{A}'} v_1 = \chi_{\omega}^2(x) f_{\mathcal{A}'} \quad (v_1(0), \partial_t v_1(0)) = (u_0, u_1) \\ \Box_{\mathcal{A}'} v_2 = \chi_{\omega}^2(x) (f_{\mathcal{A}} - f_{\mathcal{A}'}) \quad (v_2(0), \partial_t v_2(0)) = (0, 0) \end{cases}$$

Clearly $(v_1(T), \partial_t v_1(T)) = (0, 0)$, hence $E_{A'}(v)(T) = E_{A'}(v_2)(T)$

 \longrightarrow Conclude with hyperbolic energy estimate.

《日》《圖》《圖》《圖》

Theorem (Control of smooth data)

Assume that (ω, T) satisfies (GCC) for the metric A. Then for any metric B of class C^1 , and any $\alpha \in]0, 1]$, the respective solutions u and v of

$$\begin{cases} P_A u = \chi_{\omega}^2(x) f_A & in \quad (0, T) \times \Omega \\ P_B v = \chi_{\omega}^2(x) f_A & in \quad (0, T) \times \Omega \\ u = v = 0 & on \quad (0, T) \times \partial \Omega \\ (u(0), \partial_t u(0)) = (v(0), \partial_t v(0)) = (u_0, u_1) \in H^{1+\alpha}(\Omega) \times H^{\alpha}(\Omega) \end{cases}$$

satisfy

$$E_A^{1/2}(u-v)(T) \leq c_{lpha} ||A-B||_{C^1}^{lpha} imes ||(u_0,u_1)||_{H^{1+lpha} imes H^{lpha}}$$

for some constant $c_{\alpha} > 0$.

25 / 33

Strategy

 \rightarrow First prove

$$Eu(0) \leq c \int_0^T \int_{\omega} |\partial_t u(t,x)|^2 dx dt + ||(u_0,u_1)||^2_{L^2 \times H^{-1}}$$

 \rightarrow In the smooth case :

Contradiction argument and propagation of micro local defect measures.

 \rightarrow Contradiction argument

$$\begin{cases} Eu^k(0) = 1, \quad (u^k) \text{ solution of } (\mathsf{W}), \\ \int_0^T \int_\omega |\partial_t u^k(t, x)|^2 dx dt + ||(u_0^k, u_1^k)||_{L^2(M) \times H^{-1}(M)}^2 \le 1/k \\ \\ \begin{cases} u^k \rightharpoonup 0 \quad \text{in} \quad H^1((0, T) \times M), \\ \\ \int_0^T \int_\omega |\partial_t u^k(t, x)|^2 dx dt \to 0 \end{cases} \end{cases}$$

Let μ be a **microlocal defect measure** attached to u_k .

 $\rightarrow ~\mu=0$ over (0, T) $\times\,\omega$ and by propagation and GCC, $\mu=0$ everywhere.

Contradiction with $Eu^k(0) = 1$.

《日》《圖》《圖》《圖》

Back to non smooth metric

To be achieved : Prove a propagation result for μ , in a low regularity setting.

3 🖌 🖌 3 🕨

Contradiction argument

Recall : $A(x) = (a_{ij}(x))$, $d \times d$ symmetric definite positive matrix, and κ a real valued function, $\kappa(x) > 0$ (a density).

Denote $\mathcal{A}=(\mathcal{A},\kappa)$,

$$\Delta_{\mathcal{A}} = rac{1}{\kappa(x)} \sum_{ij} \partial_j a_{ij}(x) \kappa(x) \partial_i$$

and consider the Klein-Gordon equation :

$$Pu = \partial_t^2 u - \Delta_A u + u = 0$$
 on $(0, T) \times \Omega$

 \longrightarrow Consider a sequence of $\mathcal{A}_k = (\mathcal{A}_k, \kappa_k)$ s.t

 $\|\mathcal{A}-\mathcal{A}_k\|_{W^{1,\infty}}\to 0, \quad \text{and for each } k, \quad \|(u_0^{k,p},u_1^{k,p})\|_{H^1\times L^2}=1$

$$\begin{cases} P_k u_k^p = \partial_t^2 u_k^p - \Delta_{\mathcal{A}_k} u_k^p + u_k^p = 0 & \text{on} \quad (0, T) \times \Omega \\ \\ u_k^p(0) = u_0^{k,p}, & \partial_t u_k^p(0) = u_1^{k,p} \end{cases} \end{cases}$$

and

$$\int_0^T \int_\omega |\partial_t u_k^p|^2 dx dt \ \le \ 1/p.$$

Denote $u_k^k \rightsquigarrow u_k$,

$$\begin{cases} P_k u_k = \partial_t^2 u_k - \Delta_{\mathcal{A}_k} u_k + u_k = 0 & \text{on} \quad (0, T) \times \Omega \\ \|(u_0^k, u_1^k)\|_{H^1 \times L^2} = 1 \\ \int_0^T \int_{\omega} |\partial_t u_k|^2 dx dt \longrightarrow 0 \end{cases}$$

and assume

$$u_k
ightarrow 0$$
 weakly in $H^1((0, T) \times \Omega)$

Let μ be a microlocal defect measure attached to the sequence u_k .

◆□ → ◆□ → ◆ □ → ◆ □ → ○ □

$$P_0 u_k = (P_0 - P_k)u_k = (\Delta_{\mathcal{A}_k} - \Delta_{\mathcal{A}})u_k \longrightarrow 0$$
 in H^{-1}
Consider $Q = q(t, x; D_t, D_x) \in Op(S^1_{cl})$.
And calculate the bracket

$$\left([P_0,Q]u_k,u_k\right)_{L^2}=\left([\Delta_{\mathcal{A}_k}-\Delta_{\mathcal{A}},Q]u_k,u_k\right)_{L^2}+o(1/k)$$

Theorem (Calderon, Coifman-Meyer 85')

For any function $m \in W^{1,\infty}(\mathbb{R}^{d+1})$, the bracket [m, Q] continuously maps $L^2(\mathbb{R}^{d+1})$ in itself and

$$\|[m, Q]\|_{L^2 \to L^2} \le C \|m\|_{W^{1,\infty}}$$

Thus $([P_0, Q]u_k, u_k)_{L^2} \longrightarrow 0$ and ${}^tH_{p_0}\mu = 0$. μ is invariant along the hamiltonian flow of P_0 (propagation). If we look carefully, the previous bracket calculus also works for a referential metric of class C^1 .

This gives

$$^{t}H_{p_{0}}\mu=0$$

where the vector field H_{p_0} has continuous coefficients.

 \longrightarrow How to deal with this measure equation ?

Next lecture by Jérôme !