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Setting

(W )


∂2
t u −∆xu = 0 in ]0,+∞[×M

(u(0), ∂tu(0)) = (u0, u1) ∈ H1 × L2

M Riemannian manifold, connected, compact, without boundary, with
dimension d.

M = Ω open subset of Rd , connected, bounded, with ”smooth”
boundary ( homogeneous Dirichlet condition ).

H = C ([0,+∞[,H1) ∩ C 1([0,+∞[, L2)

−→ Consider ω an open subset of M and Γ an open subset of ∂Ω
and also a time T > 0.

2 / 33



The Goal

Provide internal or boundary exact control results in the case of
non smooth metrics.
Given (u0, u1), find a control vector f ( resp. g) s.t the solution of{

∂2
t u −∆xu = χωf

(u(0), ∂tu(0)) = (u0, u1)

resp. 
∂2
t u −∆xu = 0

u = χΓg on ∂Ω
(u(0), ∂tu(0)) = (u0, u1)

satisfies u(T ) = ∂tu(T ) = 0.

Tool : By HUM , we need an observability estimate for the wave
equation (W).
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Observability estimates

Boundary observation

Eu(0) ≤ c

∫ T

0

∫
Γ

∣∣∣∂u
∂n

(t, x)
∣∣∣2dσdt

Remark: The converse is ”always” true :∫ T

0

∫
∂Ω

∣∣∣∂u
∂n

(t, x)
∣∣∣2dσdt ≤ c Eu(0)

→ Hidden regularity.
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Internal observation

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt (O)

Or at least

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt + c ||(u0, u1)||2L2(M)×H−1(M) (RO)

→ unique continuation property....

Or either observation with loss

Eu(0) ≤ c ||u||2Hm((0,T )×ω), m > 1 (OL)

Remark : If M is a compact manifold without boundary, we consider
instead the Klein-Gordon equation

∂2
t u −∆xu + u = 0
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Applications

→ Exact controllability (HUM)

→ Stabilization
Eu(t) ≤ C exp−γtEu(0)

for solutions of the damped equation

∂2
t u −∆xu + a(x)∂tu = 0

→ Inverse problems

Stability results, ....
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State of the art

80’ : Observability estimates under the Γ-condition of J.L. Lions.
→ Metric of class C 1.
→ Multiplier techniques.

90’ : Microlocal conditions and microlocal tools ( Rauch and Taylor,
Bardos, Lebeau and Rauch, Burq and Gérard ).
The geometric control condition (G.C.C) : a microlocal condition,
stated in the cotangent bundle (of Melrose-Sjostrand).

→ Microlocal and pseudo-differential techniques : propagation of
wave front sets and supports of microlocal defect measures.
→ The condition is optimal but....... a priori needs smooth metric
and smooth boundary.

97’ N. Burq : Boundary observability: C 2-metric and C 3-boundary.
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Geometric Control Condition I
The couple (ω,T ) satisfies the geometric control condition (G.C.C), if
every geodesic of Ω issued at t = 0 and travelling with speed 1, enters in
ω before the time T .

Geometric Control Condition II
The couple (Γ,T ) satisfies the geometric control condition (G.C.C), if
every generalized bicharacteristic of the wave symbol, issued at t = 0,
intersects the boundary subset Γ at a nondiffractive point, before the time
T .
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Some Functional Spaces

a(x) is resp. Zygmund or Log-Zygmund continuous function if

|h| < 1, 
|a(x + h) + a(x − h)− 2a(x)| ≤ K |h|

|a(x + h) + a(x − h)− 2a(x)| ≤ K |h|(1− Log |h|)

For 0 < α < 1,

W 1,∞ = Lip ⊂ Z = C 1
∗ ⊂ LL ⊂ LZ ⊂ Cα
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The OL theorem of Fanelli-Zuazua (2014)

1-D setting, Ω =]0, 1[, a(x)∂2
t u − ∂2

xu = 0.

Theorem (Fanelli - Zuazua 1)

Assume a(x) ∈ Z, then for T > Ta, there exists C > 0 s.t

Eu(0) ≤ C

∫ T

0
|∂xu(t, 0)|2dt (1)

Theorem (Fanelli - Zuazua 2)

Assume a(x) ∈ LZ and denote Daf = a(x)−1∂2
x f . Then for T > Ta, there

exist C > 0 and m ∈ N s.t

Eu(0) ≤ C

∫ T

0
|∂mt ∂xu(t, 0)|2dt (2)

for all initial data (u0, u1) ∈ (H2m+1 ∩ H1
0 )× H2m satisfying

Dm
a u0 ∈ H1 Dm

a u1 ∈ L2
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Comments

Classical boundary observation in Th. 1 and boundary observation
with loss in Th. 2.

For a(x) worse that LZ , infinite loss of derivatives :
No Observability !

See also the counter-example of Castro - Zuazua ( 03’).

Proof: 1-dimensional technique: the sidewise energy estimates, i.e
hyperbolic energy estimates by interchanging time ←→ space.
( Colombini, Spagnolo, Lerner, Métivier, Fanelli....)

1-D geometry: all characteristic rays reach the boundary in uniform
time.

Question: What about dimensions higher than 1, where geometry is
more evolved ???
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Case of a continuous density a(x) in Rd

(W)


a(x)∂2

t u −∆xu = 0 in (0,T )× Ω,

u = 0 on (0,T )× ∂Ω,

(u(0), ∂tu(0)) ∈ H1
0 × L2

Assumption : There exists α ∈ (0, 2], s.t

x · ∇a(x) + (2− α)a(x) ≥ 0 in the sense of D′(Rd).

∀ϕ ∈ D(Rd), with ϕ ≥ 0,

∫
Rd

a(x) (−div(xϕ(x)) + (2− α)ϕ(x)) dx ≥ 0
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Observation region
ω an open neighborhood (in Ω) of an open subset Γ of the boundary
satisfying the multiplier condition, i.e

{x ∈ ∂Ω, such that x · nx > 0} ⊂ Γ,

Let R = sup{|x |, x ∈ Ω} and a1 = sup{a(x), x ∈ Ω}

Theorem (D-Ervedoza 17’)

For αT > 4R
√
a1, there exists a constant C > 0 s.t the observability

estimate

Eu(0) ≤ C

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt

holds true for every solution of (W).
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Examples

One can take a(x) = a(r , θ) = f (r)g(θ)
with f , g positive continuous, and f ′(r) ≥ 0 in the sense of
distributions.

→ Allows highly oscillating function g(θ).

Ω = B(0,R) \ B(0,R1), 0 < R1 < R, and a(x) = 1/r2.

Take x0 ∈ Ω, ξ0 6= 0, x0.ξ0 = 0, and τ0 = |x0||ξ0|

The ray γ(s) issued from (0, x0, τ0, ξ0) satisfies

d2

ds2

(
|x(s)|2

)
= 0 and

d

ds

(
|x(s)|2

) ∣∣∣
s=0

= 0

→ |x(s)| = |x0| Captive ray !
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Stability properties

Denote A(x) = (aij(x)), d × d symmetric definite positive matrix,
and κ a real valued function, κ(x) > 0 ( a density ).

Denote A = (A, κ) ,

∆A =
1

κ(x)

∑
ij

∂jaij(x)κ(x)∂i

and consider the wave operator

PA = ∂2
t −∆A
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Theorem (Burq-D-Le Rousseau 19’)

Assume that A = (A, κ) is smooth and that (ω,T ) ( resp. ( Γ,T ))
satisfies (GCC) for PA.
Take B ∈ Uε, an ε-neighborhood of A in W 1,∞.
Then for ε small enough, the (classical) observability estimate holds true

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2κdxdt

(
resp.

∫ T

0

∫
Γ

∣∣∣∂u
∂n

(t, x)
∣∣∣2κdσdt)

for every solution of

PBu = ∂2
t u −∆Bu = 0, u|∂Ω = 0

Corollary

Under conditions above, we get exact controllability for PB = ∂2
t −∆B,

in time T .
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Comments

→ No geometry setting for the metric B !!!

→ One can replace Eu(0) by EBu(0).

→ One can also consider the same problem on a perturbed domain Ωε,
with W 2,∞ perturbation.

metric A −→ B = Aε W 1,∞ ε− perturbation

domain Ω −→ Ωε W 2,∞ ε− perturbation

→ For a given metric B ∈W 1,∞, we cannot decide if PB is observable or
not.
In particular, what happens for B ∈ C 1 and ∂Ω of class C 2 ???

Next lecture by Jérôme !
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Behavior of the HUM control process

(W )


∂2
t u −∆Au = χ2

ω(x)f in ]0,T [×Ω
u = 0 on ]0,T [×∂Ω
(u(0), ∂tu(0)) = (u0, u1) ∈ H1

0 × L2

We look for f ∈ L2(]0,T [×Ω), s.t

(u(T ), ∂tu(T )) = (0, 0)

By HUM and under (G.C.C), we can take f solution of

(W ′)


∂2
t f −∆Af = 0 in ]0,T [×Ω

f = 0 on ]0,T [×∂Ω
(f (0), ∂t f (0)) = (f0, f1) ∈ L2 × H−1
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The map 
Λ : H1

0 × L2 → L2 × H−1

(u0, u1)→ (f0, f1)

is an isomorphism; this is HUM optimal control operator.

Denote by fA the HUM control attached to PA, i.e the solution of (W’).
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Theorem (D-Lebeau, 2009)

In the setting above and under (G.C.C),
a) For all s ≥ 0,

Λ : Hs+1 × Hs → Hs × Hs−1

is an isomorphism.

b) ∥∥∥Λψ(2−kD)− ψ(2−kD)Λ
∥∥∥ ≤ C2−k/2

c) If M is a Riemannian manifold without boundary, Λ is a pseudo
differential operator.
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Behavior of the HUM control process

Let A = (A, κ) be smooth ( C 2) and such that (ω,T ) satisfies (GCC).

Theorem (Burq-D-Le Rousseau 19’)

For any C 2- neighborhood U of A, there exist A′ ∈ U and an initial data
(u0, u1) , ||(∇Au0, u1)||L2×L2 = 1, s.t the respective solutions u and v of

∂2
t u −∆Au = χ2

ω(x)fA

∂2
t v −∆A′v = χ2

ω(x)fA

(u(0), ∂tu(0)) = (v(0), ∂tv(0)) = (u0, u1) ∈ H1
0 × L2

satisfy
EA(u − v)(T ) = EA(v)(T ) ≥ 1/2

Moreover,
||fA − fA′ ||L2((0,T )×ω) ≥ 1/

√
8T
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Remarks

(GCC) also satisfied by (ω,T ) for the metric A′.

→ fA′ is well defined.

For fixed initial data, the map

(C2(Ω))d
2+1 −→ L2((0,T )× ω)

A = (A, κ) −→ fA

is not continuous.
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Proof
→ Choose A′ = (1 + ε)A

→ Take a sequence (uk0 , u
k
1 ) such that ||(∇uk0 , uk1 )||L2×L2 = 1 and

(uk0 , u
k
1 ) ⇀ (0, 0) in H1

0 × L2, .

→ f kA ⇀ 0 in L2((0,T )× Ω). Hence f kA → 0 in H−1((0,T )× Ω)
and suppµ(fkA) ⊂ Char(∂2

t −∆A) = {τ2 − Ax(ξ, ξ) = 0}.

→ suppµ(vk) ⊂ Char(∂2
t −∆A′) = {τ2 − A′x(ξ, ξ) = 0}

→ suppµ(vk) ∩ suppµ(fkA) = ∅

EA′(v
k)(T )− EA′(v

k)(0) = 2

∫ T

0

∫
Ω
χ2
ω(x)f kA∂tv

k dxdt −→ 0.
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On the other hand, decompose this function v as v = v1 + v2 where


�A′v1 = χ2

ω(x)fA′ (v1(0), ∂tv1(0)) = (u0, u1)

�A′v2 = χ2
ω(x)(fA − fA′) (v2(0), ∂tv2(0)) = (0, 0)

Clearly (v1(T ), ∂tv1(T )) = (0, 0), hence EA′(v)(T ) = EA′(v2)(T )

−→ Conclude with hyperbolic energy estimate.
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Theorem (Control of smooth data)

Assume that (ω,T ) satisfies (GCC ) for the metric A. Then for any metric
B of class C 1, and any α ∈]0, 1], the respective solutions u and v of

PAu = χ2
ω(x)fA in (0,T )× Ω

PBv = χ2
ω(x)fA in (0,T )× Ω

u = v = 0 on (0,T )× ∂Ω

(u(0), ∂tu(0)) = (v(0), ∂tv(0)) = (u0, u1) ∈ H1+α(Ω)× Hα(Ω)

satisfy

E
1/2
A (u − v)(T ) ≤ cα||A− B||αC1 × ||(u0, u1)||H1+α×Hα

for some constant cα > 0.
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Proof of the observability estimate

Strategy

→ First prove

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt + ||(u0, u1)||2L2×H−1

→ In the smooth case :

Contradiction argument and propagation of micro local defect measures.
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Smooth case

→ Contradiction argument
Euk(0) = 1, (uk) solution of (W),∫ T

0

∫
ω |∂tu

k(t, x)|2dxdt + ||(uk0 , uk1 )||2L2(M)×H−1(M) ≤ 1/k
uk ⇀ 0 in H1((0,T )×M),∫ T

0

∫
ω |∂tu

k(t, x)|2dxdt → 0

Let µ be a microlocal defect measure attached to uk .

→ µ = 0 over (0,T )× ω and by propagation and GCC, µ = 0
everywhere.

Contradiction with Euk(0) = 1.
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Back to non smooth metric

To be achieved : Prove a propagation result for µ, in a low regularity
setting.
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Stability result : Boundaryless case ( Warm up )

Contradiction argument

Recall : A(x) = (aij(x)), d × d symmetric definite positive matrix,
and κ a real valued function, κ(x) > 0 ( a density ).

Denote A = (A, κ) ,

∆A =
1

κ(x)

∑
ij

∂jaij(x)κ(x)∂i

and consider the Klein-Gordon equation :

Pu = ∂2
t u −∆Au + u = 0 on (0,T )× Ω
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−→ Consider a sequence of Ak = (Ak , κk) s.t

‖A −Ak‖W 1,∞ → 0, and for each k , ‖(uk,p0 , uk,p1 )‖H1×L2 = 1


Pku

p
k = ∂2

t u
p
k −∆Ak

upk + upk = 0 on (0,T )× Ω

upk (0) = uk,p0 , ∂tu
p
k (0) = uk,p1

and ∫ T

0

∫
ω
|∂tupk |

2dxdt ≤ 1/p.
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Denote ukk  uk ,


Pkuk = ∂2

t uk −∆Ak
uk + uk = 0 on (0,T )× Ω

‖(uk0 , uk1 )‖H1×L2 = 1∫ T
0

∫
ω |∂tuk |

2dxdt −→ 0

and assume
uk ⇀ 0 weakly in H1((0,T )× Ω)

Let µ be a microlocal defect measure attached to the sequence uk .
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P0uk = (P0 − Pk)uk = (∆Ak
−∆A)uk −→ 0 in H−1

Consider Q = q(t, x ;Dt ,Dx) ∈ Op(S1
cl).

And calculate the bracket(
[P0,Q]uk , uk

)
L2

=
(

[∆Ak
−∆A,Q]uk , uk

)
L2

+ o(1/k)

.

Theorem (Calderon, Coifman-Meyer 85’)

For any function m ∈W 1,∞(Rd+1), the bracket [m,Q] continuously maps
L2(Rd+1) in itself and

‖[m,Q]‖L2→L2 ≤ C‖m‖W 1,∞

Thus
(

[P0,Q]uk , uk

)
L2
−→ 0 and tHp0µ = 0.

µ is invariant along the hamiltonian flow of P0 (propagation).
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If we look carefully, the previous bracket calculus also works for a
referential metric of class C 1.

This gives
tHp0µ = 0

where the vector field Hp0 has continuous coefficients.

−→ How to deal with this measure equation ?

Next lecture by Jérôme !
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