Controllability of the Wave Equation with Rough Coefficients

Part ${ }^{1}$

Belhassen DEHMAN ${ }^{2}$

Conference in Honor of Jean Pierre RAYMOND

Toulouse, September 2019
${ }^{1}$ Joint works with N. Burq (Univ. Paris Sud), J. Le Rousseau (Univ. Paris 13) and S. Ervedoza (Univ. Paul Sabatier, Toulouse)
${ }^{2}$ Faculté des Sciences de Tunis \& Enit-Lamsin

Setting

(W) $\left\{\begin{array}{l}\left.\partial_{t}^{2} u-\Delta_{x} u=0 \quad \text { in } \quad\right] 0,+\infty[\times M \\ \left(u(0), \partial_{t} u(0)\right)=\left(u_{0}, u_{1}\right) \in H^{1} \times L^{2}\end{array}\right.$

- M Riemannian manifold, connected, compact, without boundary, with dimension d.
- $M=\Omega$ open subset of \mathbb{R}^{d}, connected, bounded, with "smooth" boundary (homogeneous Dirichlet condition).

$$
H=C\left(\left[0,+\infty\left[, H^{1}\right) \cap C^{1}\left(\left[0,+\infty\left[, L^{2}\right)\right.\right.\right.\right.
$$

\longrightarrow Consider ω an open subset of M and Γ an open subset of $\partial \Omega$ and also a time $T>0$.

The Goal

Provide internal or boundary exact control results in the case of non smooth metrics.
Given $\left(u_{0}, u_{1}\right)$, find a control vector f (resp. g) s.t the solution of

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta_{x} u=\chi_{\omega} f \\
\left(u(0), \partial_{t} u(0)\right)=\left(u_{0}, u_{1}\right)
\end{array}\right.
$$

resp.

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta_{x} u=0 \\
u=\chi_{\ulcorner } g \text { on } \partial \Omega \\
\left(u(0), \partial_{t} u(0)\right)=\left(u_{0}, u_{1}\right)
\end{array}\right.
$$

satisfies $u(T)=\partial_{t} u(T)=0$.
Tool : By HUM, we need an observability estimate for the wave equation (W).

Observability estimates

Boundary observation

$$
E u(0) \leq c \int_{0}^{T} \int_{\Gamma}\left|\frac{\partial u}{\partial n}(t, x)\right|^{2} d \sigma d t
$$

Remark: The converse is "always" true :

$$
\int_{0}^{T} \int_{\partial \Omega}\left|\frac{\partial u}{\partial n}(t, x)\right|^{2} d \sigma d t \leq c E u(0)
$$

\rightarrow Hidden regularity.

Internal observation

$$
\begin{equation*}
E u(0) \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t \tag{O}
\end{equation*}
$$

Or at least

$$
\begin{equation*}
E u(0) \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t+c\left\|\left(u_{0}, u_{1}\right)\right\|_{L^{2}(M) \times H^{-1}(M)}^{2} \tag{RO}
\end{equation*}
$$

\rightarrow unique continuation property....
Or either observation with loss

$$
\begin{equation*}
E u(0) \leq c\|u\|_{H^{m}((0, T) \times \omega)}^{2}, \quad m>1 \tag{OL}
\end{equation*}
$$

Remark: If M is a compact manifold without boundary, we consider instead the Klein-Gordon equation

$$
\partial_{t}^{2} u-\Delta_{x} u+u=0
$$

Applications

\rightarrow Exact controllability (HUM)

\rightarrow Stabilization

$$
E u(t) \leq C \exp ^{-\gamma t} E u(0)
$$

for solutions of the damped equation

$$
\partial_{t}^{2} u-\Delta_{x} u+a(x) \partial_{t} u=0
$$

\rightarrow Inverse problems
Stability results,

State of the art

- 80' : Observability estimates under the 「-condition of J.L. Lions.
\rightarrow Metric of class C^{1}.
\rightarrow Multiplier techniques.
- 90' : Microlocal conditions and microlocal tools (Rauch and Taylor, Bardos, Lebeau and Rauch, Burq and Gérard). The geometric control condition (G.C.C) : a microlocal condition, stated in the cotangent bundle (of Melrose-Sjostrand).
\rightarrow Microlocal and pseudo-differential techniques: propagation of wave front sets and supports of microlocal defect measures.
\rightarrow The condition is optimal but....... a priori needs smooth metric and smooth boundary.
- 97' N. Burq : Boundary observability: C^{2}-metric and C^{3}-boundary.

Geometric Control Condition I

The couple (ω, T) satisfies the geometric control condition (G.C.C), if every geodesic of Ω issued at $t=0$ and travelling with speed 1 , enters in ω before the time T.

Geometric Control Condition II

The couple (Γ, T) satisfies the geometric control condition (G.C.C), if every generalized bicharacteristic of the wave symbol, issued at $t=0$, intersects the boundary subset Γ at a nondiffractive point, before the time T.

Some Functional Spaces

$a(x)$ is resp. Zygmund or Log-Zygmund continuous function if
$|h|<1$,

$$
\left\{\begin{array}{l}
|a(x+h)+a(x-h)-2 a(x)| \leq K|h| \\
|a(x+h)+a(x-h)-2 a(x)| \leq K|h|(1-\log |h|)
\end{array}\right.
$$

For $0<\alpha<1$,

$$
W^{1, \infty}=L i p \subset Z=C_{*}^{1} \subset L L \subset L Z \subset C^{\alpha}
$$

The OL theorem of Fanelli-Zuazua (2014)

1-D setting, $\quad \Omega=] 0,1\left[, \quad a(x) \partial_{t}^{2} u-\partial_{x}^{2} u=0\right.$.

Theorem (Fanelli - Zuazua 1)

Assume $a(x) \in Z$, then for $T>T_{a}$, there exists $C>0$ s.t

$$
\begin{equation*}
E u(0) \leq C \int_{0}^{T}\left|\partial_{x} u(t, 0)\right|^{2} d t \tag{1}
\end{equation*}
$$

Theorem (Fanelli - Zuazua 2)

Assume $a(x) \in L Z$ and denote $D_{a} f=a(x)^{-1} \partial_{x}^{2} f$. Then for $T>T_{a}$, there exist $C>0$ and $m \in \mathbb{N}$ s.t

$$
\begin{equation*}
E u(0) \leq C \int_{0}^{T}\left|\partial_{t}^{m} \partial_{x} u(t, 0)\right|^{2} d t \tag{2}
\end{equation*}
$$

for all initial data $\left(u_{0}, u_{1}\right) \in\left(H^{2 m+1} \cap H_{0}^{1}\right) \times H^{2 m}$ satisfying

$$
D_{a}^{m} u_{0} \in H^{1} \quad D_{a}^{m} u_{1} \in L^{2}
$$

Comments

- Classical boundary observation in Th. 1 and boundary observation with loss in Th. 2.
- For $a(x)$ worse that $L Z$, infinite loss of derivatives:

No Observability !
See also the counter-example of Castro - Zuazua (03').

- Proof: 1-dimensional technique: the sidewise energy estimates, i.e hyperbolic energy estimates by interchanging time \longleftrightarrow space. (Colombini, Spagnolo, Lerner, Métivier, Fanelli....)
- 1-D geometry: all characteristic rays reach the boundary in uniform time.

Comments

- Classical boundary observation in Th. 1 and boundary observation with loss in Th. 2.
- For $a(x)$ worse that $L Z$, infinite loss of derivatives:

No Observability !
See also the counter-example of Castro - Zuazua (03').

- Proof: 1-dimensional technique: the sidewise energy estimates, i.e hyperbolic energy estimates by interchanging time \longleftrightarrow space. (Colombini, Spagnolo, Lerner, Métivier, Fanelli....)
- 1-D geometry: all characteristic rays reach the boundary in uniform time.
- Question: What about dimensions higher than 1 , where geometry is more evolved ???

Case of a continuous density a (x) in \mathbb{R}^{d}

(W) $\begin{cases}a(x) \partial_{t}^{2} u-\Delta_{x} u=0 & \text { in }(0, T) \times \Omega, \\ u=0 & \text { on }(0, T) \times \partial \Omega, \\ \left(u(0), \partial_{t} u(0)\right) \in H_{0}^{1} \times L^{2} & \end{cases}$

Assumption : There exists $\alpha \in(0,2]$, s.t

$$
x \cdot \nabla a(x)+(2-\alpha) a(x) \geq 0 \quad \text { in the sense of } \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

$\forall \varphi \in D\left(\mathbb{R}^{d}\right)$, with $\varphi \geq 0, \quad \int_{\mathbb{R}^{d}} a(x)(-\operatorname{div}(x \varphi(x))+(2-\alpha) \varphi(x)) d x \geq 0$

Observation region

ω an open neighborhood (in Ω) of an open subset Γ of the boundary satisfying the multiplier condition, i.e

$$
\left\{x \in \partial \Omega, \quad \text { such that } \quad x \cdot n_{x}>0\right\} \subset \Gamma,
$$

Let $R=\sup \{|x|, x \in \Omega\}$ and $a_{1}=\sup \{a(x), x \in \bar{\Omega}\}$

Theorem (D-Ervedoza 17')

For $\alpha T>4 R \sqrt{a_{1}}$, there exists a constant $C>0$ s.t the observability estimate

$$
E u(0) \leq C \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t
$$

holds true for every solution of (W).

Examples

- One can take $\quad a(x)=a(r, \theta)=f(r) g(\theta)$ with f, g positive continuous, and $f^{\prime}(r) \geq 0$ in the sense of distributions.
$\rightarrow \quad$ Allows highly oscillating function $g(\theta)$.
- $\Omega=B(0, R) \backslash B\left(0, R_{1}\right), \quad 0<R_{1}<R$, and $a(x)=1 / r^{2}$.

Take $x_{0} \in \Omega, \xi_{0} \neq 0, x_{0} . \xi_{0}=0$, and $\tau_{0}=\left|x_{0}\right|\left|\xi_{0}\right|$
The ray $\gamma(s)$ issued from $\left(0, x_{0}, \tau_{0}, \xi_{0}\right)$ satisfies

$$
\frac{d^{2}}{d s^{2}}\left(|x(s)|^{2}\right)=0 \quad \text { and }\left.\quad \frac{d}{d s}\left(|x(s)|^{2}\right)\right|_{s=0}=0
$$

$\rightarrow \quad|x(s)|=\left|x_{0}\right| \quad$ Captive ray!

Stability properties

Denote $A(x)=\left(a_{i j}(x)\right), \quad d \times d$ symmetric definite positive matrix, and κ a real valued function, $\kappa(x)>0$ (a density).

Denote $\mathcal{A}=(A, \kappa)$,

$$
\Delta_{\mathcal{A}}=\frac{1}{\kappa(x)} \sum_{i j} \partial_{j} a_{i j}(x) \kappa(x) \partial_{i}
$$

and consider the wave operator

$$
P_{\mathcal{A}}=\partial_{t}^{2}-\Delta_{\mathcal{A}}
$$

Theorem (Burq-D-Le Rousseau 19')

Assume that $\mathcal{A}=(A, \kappa)$ is smooth and that $(\omega, T)(\operatorname{resp} .(\Gamma, T))$ satisfies (GCC) for $P_{\mathcal{A}}$.
Take $\mathcal{B} \in \mathcal{U}_{\varepsilon}$, an ε-neighborhood of \mathcal{A} in $W^{1, \infty}$.
Then for ε small enough, the (classical) observability estimate holds true

$$
E u(0) \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} \kappa d x d t \quad\left(r e s p . \int_{0}^{T} \int_{\Gamma}\left|\frac{\partial u}{\partial n}(t, x)\right|^{2} \kappa d \sigma d t\right)
$$

for every solution of

$$
P_{\mathcal{B}} u=\partial_{t}^{2} u-\Delta_{\mathcal{B}} u=0, \quad u_{\mid \partial \Omega}=0
$$

Corollary

Under conditions above, we get exact controllability for $P_{\mathcal{B}}=\partial_{t}^{2}-\Delta_{\mathcal{B}}$, in time T.

Comments

$\rightarrow \quad$ No geometry setting for the metric $B!!!$
\rightarrow One can replace $E u(0)$ by $E_{B} u(0)$.
\rightarrow One can also consider the same problem on a perturbed domain Ω_{ε}, with $W^{2, \infty}$ perturbation.

$$
\text { metric } \quad A \longrightarrow B=A_{\varepsilon} \quad W^{1, \infty} \quad \varepsilon-\text { perturbation }
$$ domain $\quad \Omega \longrightarrow \Omega_{\varepsilon} \quad W^{2, \infty} \quad \varepsilon-$ perturbation

\rightarrow For a given metric $B \in W^{1, \infty}$, we cannot decide if $P_{\mathcal{B}}$ is observable or not.
In particular, what happens for $B \in C^{1}$ and $\partial \Omega$ of class C^{2} ???
Next lecture by Jérôme!

Behavior of the HUM control process

$$
(W)\left\{\begin{array}{l}
\left.\partial_{t}^{2} u-\Delta_{\mathcal{A}} u=\chi_{\omega}^{2}(x) f \quad \text { in } \quad\right] 0, T[\times \Omega \\
u=0 \\
\left(u(0), \partial_{t} u(0)\right)=\left(u_{0}, u_{1}\right) \in H_{0}^{1} \times L^{2}
\end{array}\right.
$$

We look for $f \in L^{2}(] 0, T[\times \Omega)$, s.t

$$
\left(u(T), \partial_{t} u(T)\right)=(0,0)
$$

By HUM and under (G.C.C), we can take f solution of

$$
\left(W^{\prime}\right)\left\{\begin{array}{l}
\left.\partial_{t}^{2} f-\Delta_{\mathcal{A}} f=0 \quad \text { in } \quad\right] 0, T[\times \Omega \\
f=0 \quad \text { on }] 0, T[\times \partial \Omega \\
\left(f(0), \partial_{t} f(0)\right)=\left(f_{0}, f_{1}\right) \in L^{2} \times H^{-1}
\end{array}\right.
$$

The map

$$
\left\{\begin{array}{c}
\Lambda: H_{0}^{1} \times L^{2} \rightarrow L^{2} \times H^{-1} \\
\left(u_{0}, u_{1}\right) \rightarrow\left(f_{0}, f_{1}\right)
\end{array}\right.
$$

is an isomorphism; this is HUM optimal control operator.

Denote by $f_{\mathcal{A}}$ the HUM control attached to $P_{\mathcal{A}}$, i.e the solution of $\left(W^{\prime}\right)$.

Theorem (D-Lebeau, 2009)

In the setting above and under (G.C.C),
a) For all $s \geq 0$,

$$
\Lambda: H^{s+1} \times H^{s} \rightarrow H^{s} \times H^{s-1}
$$

is an isomorphism.
b)

$$
\left\|\Lambda \psi\left(2^{-k} D\right)-\psi\left(2^{-k} D\right) \Lambda\right\| \leq C 2^{-k / 2}
$$

c) If M is a Riemannian manifold without boundary, Λ is a pseudo differential operator.

Behavior of the HUM control process

Let $\mathcal{A}=(A, \kappa)$ be smooth $\left(C^{2}\right)$ and such that (ω, T) satisfies (GCC).

Theorem (Burq-D-Le Rousseau 19')

For any C^{2} - neighborhood \mathcal{U} of \mathcal{A}, there exist $\mathcal{A}^{\prime} \in \mathcal{U}$ and an initial data $\left(u_{0}, u_{1}\right),\left\|\left(\nabla_{A} u_{0}, u_{1}\right)\right\|_{L^{2} \times L^{2}}=1$, s.t the respective solutions u and v of

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta_{\mathcal{A}} u=\chi_{\omega}^{2}(x) f_{\mathcal{A}} \\
\partial_{t}^{2} v-\Delta_{\mathcal{A}^{\prime}} v=\chi_{\omega}^{2}(x) f_{\mathcal{A}} \\
\left(u(0), \partial_{t} u(0)\right)=\left(v(0), \partial_{t} v(0)\right)=\left(u_{0}, u_{1}\right) \in H_{0}^{1} \times L^{2}
\end{array}\right.
$$

satisfy

$$
E_{A}(u-v)(T)=E_{A}(v)(T) \geq 1 / 2
$$

Moreover,

$$
\left\|f_{\mathcal{A}}-f_{\mathcal{A}^{\prime}}\right\|_{L^{2}((0, T) \times \omega)} \geq 1 / \sqrt{8 T}
$$

Remarks

- (GCC) also satisfied by (ω, T) for the metric \mathcal{A}^{\prime}.
$\rightarrow \quad f_{\mathcal{A}^{\prime}}$ is well defined.
- For fixed initial data, the map

$$
\begin{gathered}
\left(\mathcal{C}^{2}(\Omega)\right)^{d^{2}+1} \longrightarrow L^{2}((0, T) \times \omega) \\
\mathcal{A}=(A, \kappa) \longrightarrow f_{\mathcal{A}}
\end{gathered}
$$

is not continuous.

Proof

\rightarrow Choose $A^{\prime}=(1+\varepsilon) A$
\rightarrow Take a sequence $\left(u_{0}^{k}, u_{1}^{k}\right)$ such that $\left\|\left(\nabla u_{0}^{k}, u_{1}^{k}\right)\right\|_{L^{2} \times L^{2}}=1$ and $\left(u_{0}^{k}, u_{1}^{k}\right) \rightharpoonup(0,0)$ in $H_{0}^{1} \times L^{2}$, .
$\rightarrow \quad f_{\mathcal{A}}^{k} \rightharpoonup 0$ in $L^{2}((0, T) \times \Omega)$. Hence $f_{\mathcal{A}}^{k} \rightarrow 0$ in $H^{-1}((0, T) \times \Omega)$ and $\operatorname{supp} \mu\left(\mathrm{f}_{\mathcal{A}}^{k}\right) \subset \operatorname{Char}\left(\partial_{t}^{2}-\Delta_{\mathcal{A}}\right)=\left\{\tau^{2}-A_{x}(\xi, \xi)=0\right\}$.
$\rightarrow \operatorname{supp} \mu\left(\mathrm{v}^{k}\right) \subset \operatorname{Char}\left(\partial_{t}^{2}-\Delta_{\mathcal{A}^{\prime}}\right)=\left\{\tau^{2}-A_{x}^{\prime}(\xi, \xi)=0\right\}$
$\rightarrow \quad \operatorname{supp} \mu\left(\mathrm{v}^{k}\right) \cap \operatorname{supp} \mu\left(\mathrm{f}_{\mathcal{A}}^{k}\right)=\varnothing$

$$
E_{A^{\prime}}\left(v^{k}\right)(T)-E_{A^{\prime}}\left(v^{k}\right)(0)=2 \int_{0}^{T} \int_{\Omega} \chi_{\omega}^{2}(x) f_{\mathcal{A}}^{k} \partial_{t} v^{k} d x d t \longrightarrow 0
$$

On the other hand, decompose this function v as $v=v_{1}+v_{2}$ where

$$
\left\{\begin{array}{l}
\square_{\mathcal{A}^{\prime}} v_{1}=\chi_{\omega}^{2}(x) f_{\mathcal{A}^{\prime}} \quad\left(v_{1}(0), \partial_{t} v_{1}(0)\right)=\left(u_{0}, u_{1}\right) \\
\square_{\mathcal{A}^{\prime}} v_{2}=\chi_{\omega}^{2}(x)\left(f_{\mathcal{A}}-f_{\mathcal{A}^{\prime}}\right) \quad\left(v_{2}(0), \partial_{t} v_{2}(0)\right)=(0,0)
\end{array}\right.
$$

Clearly $\left(v_{1}(T), \partial_{t} v_{1}(T)\right)=(0,0)$, hence $E_{A^{\prime}}(v)(T)=E_{A^{\prime}}\left(v_{2}\right)(T)$
\longrightarrow Conclude with hyperbolic energy estimate.

Theorem (Control of smooth data)

Assume that (ω, T) satisfies (GCC) for the metric A. Then for any metric B of class C^{1}, and any $\left.\left.\alpha \in\right] 0,1\right]$, the respective solutions u and v of

$$
\begin{cases}P_{A} u=\chi_{\omega}^{2}(x) f_{A} & \text { in } \quad(0, T) \times \Omega \\ P_{B} v=\chi_{\omega}^{2}(x) f_{A} & \text { in }(0, T) \times \Omega \\ u=v=0 \quad \text { on } \quad(0, T) \times \partial \Omega \\ \left(u(0), \partial_{t} u(0)\right)=\left(v(0), \partial_{t} v(0)\right)=\left(u_{0}, u_{1}\right) \in H^{1+\alpha}(\Omega) \times H^{\alpha}(\Omega)\end{cases}
$$

satisfy

$$
E_{A}^{1 / 2}(u-v)(T) \leq c_{\alpha}\|A-B\|_{C^{1}}^{\alpha} \times\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{1+\alpha} \times H^{\alpha}}
$$

for some constant $c_{\alpha}>0$.

Proof of the observability estimate

Strategy

\rightarrow First prove

$$
E u(0) \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t+\left\|\left(u_{0}, u_{1}\right)\right\|_{L^{2} \times H^{-1}}^{2}
$$

$\rightarrow \quad$ In the smooth case :
Contradiction argument and propagation of micro local defect measures.

Smooth case

\rightarrow Contradiction argument

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
E u^{k}(0)=1, \quad\left(u^{k}\right) \text { solution of }(\mathrm{W}), \\
\int_{0}^{T} \int_{\omega}\left|\partial_{t} u^{k}(t, x)\right|^{2} d x d t+\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{L^{2}(M) \times H^{-1}(M)}^{2} \leq 1 / k \\
\\
\left\{\begin{array}{l}
u^{k} \rightharpoonup 0 \text { in } \quad H^{1}((0, T) \times M) \\
\int_{0}^{T} \int_{\omega}\left|\partial_{t} u^{k}(t, x)\right|^{2} d x d t \rightarrow 0
\end{array}\right.
\end{array} . \begin{array}{l}
\end{array}\right.
\end{array}\right.
$$

Let μ be a microlocal defect measure attached to u_{k}.
$\rightarrow \quad \mu=0$ over $(0, T) \times \omega$ and by propagation and GCC, $\mu=0$ everywhere.
Contradiction with $E u^{k}(0)=1$.

Back to non smooth metric

To be achieved : Prove a propagation result for μ, in a low regularity setting.

Stability result : Boundaryless case (Warm up)

Contradiction argument
Recall : $A(x)=\left(a_{i j}(x)\right), \quad d \times d$ symmetric definite positive matrix, and κ a real valued function, $\kappa(x)>0$ (a density).

Denote $\mathcal{A}=(A, \kappa)$,

$$
\Delta_{\mathcal{A}}=\frac{1}{\kappa(x)} \sum_{i j} \partial_{j} a_{i j}(x) \kappa(x) \partial_{i}
$$

and consider the Klein-Gordon equation :

$$
P u=\partial_{t}^{2} u-\Delta_{\mathcal{A}} u+u=0 \quad \text { on } \quad(0, T) \times \Omega
$$

\longrightarrow Consider a sequence of $\mathcal{A}_{k}=\left(A_{k}, \kappa_{k}\right)$ s.t $\left\|\mathcal{A}-\mathcal{A}_{k}\right\|_{W^{1, \infty}} \rightarrow 0, \quad$ and for each $k, \quad\left\|\left(u_{0}^{k, p}, u_{1}^{k, p}\right)\right\|_{H^{1} \times L^{2}}=1$

$$
\left\{\begin{array}{l}
P_{k} u_{k}^{p}=\partial_{t}^{2} u_{k}^{p}-\Delta_{\mathcal{A}_{k}} u_{k}^{p}+u_{k}^{p}=0 \quad \text { on } \quad(0, T) \times \Omega \\
u_{k}^{p}(0)=u_{0}^{k, p}, \quad \partial_{t} u_{k}^{p}(0)=u_{1}^{k, p}
\end{array}\right.
$$

and

$$
\int_{0}^{T} \int_{\omega}\left|\partial_{t} u_{k}^{p}\right|^{2} d x d t \leq 1 / p
$$

Denote $u_{k}^{k} \rightsquigarrow u_{k}$,

$$
\left\{\begin{array}{l}
P_{k} u_{k}=\partial_{t}^{2} u_{k}-\Delta_{\mathcal{A}_{k}} u_{k}+u_{k}=0 \quad \text { on }(0, T) \times \Omega \\
\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{1} \times L^{2}}=1 \\
\int_{0}^{T} \int_{\omega}\left|\partial_{t} u_{k}\right|^{2} d x d t \longrightarrow 0
\end{array}\right.
$$

and assume

$$
u_{k} \rightharpoonup 0 \quad \text { weakly in } \quad H^{1}((0, T) \times \Omega)
$$

Let μ be a microlocal defect measure attached to the sequence u_{k}.

$$
P_{0} u_{k}=\left(P_{0}-P_{k}\right) u_{k}=\left(\Delta_{\mathcal{A}_{k}}-\Delta_{\mathcal{A}}\right) u_{k} \longrightarrow 0 \quad \text { in } \quad H^{-1}
$$

Consider $Q=q\left(t, x ; D_{t}, D_{x}\right) \in O p\left(S_{c l}^{1}\right)$.
And calculate the bracket

$$
\left(\left[P_{0}, Q\right] u_{k}, u_{k}\right)_{L^{2}}=\left(\left[\Delta_{\mathcal{A}_{k}}-\Delta_{\mathcal{A}}, Q\right] u_{k}, u_{k}\right)_{L^{2}}+o(1 / k)
$$

Theorem (Calderon, Coifman-Meyer 85')

For any function $m \in W^{1, \infty}\left(\mathbb{R}^{d+1}\right)$, the bracket $[m, Q]$ continuously maps $L^{2}\left(\mathbb{R}^{d+1}\right)$ in itself and

$$
\|[m, Q]\|_{L^{2} \rightarrow L^{2}} \leq C\|m\|_{W^{1, \infty}}
$$

Thus $\left(\left[P_{0}, Q\right] u_{k}, u_{k}\right)_{L^{2}} \longrightarrow 0$ and ${ }^{t} H_{p_{0}} \mu=0$.
μ is invariant along the hamiltonian flow of P_{0} (propagation).

If we look carefully, the previous bracket calculus also works for a referential metric of class C^{1}.

This gives

$$
{ }^{t} H_{p_{0}} \mu=0
$$

where the vector field $H_{p_{0}}$ has continuous coefficients.
$\longrightarrow \quad$ How to deal with this measure equation ?

Next lecture by Jérôme!

