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O?u— Ayu=0 in ]0,4+o00[xM
(W)
(u(0), 0:u(0)) = (up, u1) € H x L2

@ M Riemannian manifold, connected, compact, without boundary, with
dimension d.

e M = Q open subset of R, connected, bounded, with "smooth”
boundary ( homogeneous Dirichlet condition ).

H = C([0, 4o, H*) N C*([0, 4+oc[, L?)

— Consider w an open subset of M and ' an open subset of 002
and also a time T > 0.
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The Goal

Provide internal or boundary exact control results in the case of
non smooth metrics.

Given (up, u1), find a control vector f ( resp. g) s.t the solution of

{ 0?u — Ayu = xof
(u(0), 8:u(0)) = (w0, tn)
resp.
0?u— DAyu=0
u=xrg on 0f2
(u(0), 9:u(0)) = (uo, u1)
satisfies u(T) = 0:u(T) = 0.
Tool : By HUM , we need an observability estimate for the wave
equation (W).
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Observability estimates

Boundary observation

T ou 2
< .
0) < C/O /r‘an(t,x)’ dodt

Remark: The converse is "always” true :

/ /89 det < c Eu(0)

— Hidden regularity.



Internal observation

Eu(0) < c/OT/ 1Oeu(t, x) 2t (0)

Or at least

Eu0) < c [ [ 0wt 0Pandt + el ) By (RO)
— unique continuation property....
Or either observation with loss
Eu(0) < cllul}mo,7yxwy M >1 (OL)

Remark : If M is a compact manifold without boundary, we consider
instead the Klein-Gordon equation

O2u—Au+u=0
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Applications

— Exact controllability (HUM)

— Stabilization
Eu(t) < Cexp " Eu(0)

for solutions of the damped equation
O2u — Aju+ a(x)deu = 0

— Inverse problems

Stability results, ....
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State of the art

@ 80" : Observability estimates under the -condition of J.L. Lions.
— Metric of class C?.
— Multiplier techniques.

@ 90’ : Microlocal conditions and microlocal tools ( Rauch and Taylor,
Bardos, Lebeau and Rauch, Burq and Gérard ).
The geometric control condition (G.C.C) : a microlocal condition,
stated in the cotangent bundle (of Melrose-Sjostrand).

— Microlocal and pseudo-differential techniques : propagation of
wave front sets and supports of microlocal defect measures.

— The condition is optimal but....... a priori needs smooth metric
and smooth boundary.

@ 97" N. Burq : Boundary observability: C2-metric and C3-boundary.
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Geometric Control Condition |

The couple (w, T) satisfies the geometric control condition (G.C.C), if
every geodesic of 2 issued at t = 0 and travelling with speed 1, enters in
w before the time T.

Geometric Control Condition Il

The couple (I, T) satisfies the geometric control condition (G.C.C), if
every generalized bicharacteristic of the wave symbol, issued at t =0,
intersects the boundary subset I at a nondiffractive point, before the time
T.
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Some Functional Spaces

a(x) is resp. Zygmund or Log-Zygmund continuous function if

|h| <1,

la(x + h) + a(x — h) — 2a(x)| < K|h|

la(x + h) + a(x — h) — 2a(x)| < K|h|(1 — Log]|h|)
ForO<a<l,

Wh> =lipcz=ClcllLclLzcC®
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The OL theorem of Fanelli-Zuazua (2014)

1-D setting, Q =]0,1], x)02u — 92u = 0.

Theorem (Fanelli - Zuazua 1)

Assume a(x) € Z, then for T > T,, there exists C > 0 s.t

!
Eu(0) < c/ 10,u(t, 0)2dt (1)
0

v

Theorem (Fanelli - Zuazua 2)

Assume a(x) € LZ and denote D,f = a(x)"102f. Then for T > T,, there
exist C >0 and me N s.t

.
Eu(0) < C / O™ D u(t, 0)2dt 2)
0
for all initial data (ug, u1) € (H*™F1 N HY) x H?™ satisfying

Dlug € H*  Dfup € L2




Comments

o Classical boundary observation in Th. 1 and boundary observation
with loss in Th. 2.

@ For a(x) worse that LZ, infinite loss of derivatives :
No Observability !
See also the counter-example of Castro - Zuazua ( 03').

@ Proof: 1-dimensional technique: the sidewise energy estimates, i.e
hyperbolic energy estimates by interchanging time <— space.
( Colombini, Spagnolo, Lerner, Métivier, Fanelli....)

@ 1-D geometry: all characteristic rays reach the boundary in uniform
time.
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Comments

o Classical boundary observation in Th. 1 and boundary observation
with loss in Th. 2.

@ For a(x) worse that LZ, infinite loss of derivatives :
No Observability !
See also the counter-example of Castro - Zuazua ( 03').

@ Proof: 1-dimensional technique: the sidewise energy estimates, i.e
hyperbolic energy estimates by interchanging time <— space.
( Colombini, Spagnolo, Lerner, Métivier, Fanelli....)

@ 1-D geometry: all characteristic rays reach the boundary in uniform
time.

@ Question: What about dimensions higher than 1, where geometry is
more evolved 777
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Case of a continuous density a(x) in R?

a(x)0%u — Axu=0 in (0, T) x Q,
(W) u=0 on (0, T) x 09,

(u(0), Beu(0)) € HE x L2

Assumption : There exists a € (0,2], s.t

x-Va(x) 4+ (2—a)a(x) >0 in the sense of D'(RY).

Yo € D(RY), with ¢ > 0, /Rd a(x) (—div(xp(x)) + (2 — a)p(x)) dx >0
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Observation region
w an open neighborhood (in ) of an open subset I' of the boundary
satisfying the multiplier condition, i.e

{x € 0Q, suchthat x-n,>0}CT,
Let R = sup{|x|, x € Q} and a; = sup{a(x), x € Q}

Theorem (D-Ervedoza 17')

For aT > 4R./a1, there exists a constant C > 0 s.t the observability
estimate

.
Eu(0) < C / / Oeu(t, x)|Pdxdt
0 w

holds true for every solution of (W).

13 /33



Examples
@ One can take a(x) =a(r,0) =1(r)g(0)
with f, g positive continuous, and f/(r) > 0 in the sense of
distributions.

—  Allows highly oscillating function g(6).

e Q=B(0,R)\ B(0,R;), 0< R <R, and a(x) =1/r2
Take xp € Q, fo 75 0, Xo.fo =0,and 19 = ’X0|’€0|

The ray ~(s) issued from (0, xo, 70, &o) satisfies

2
%(!X(s)]2)20 and %(IX(S)V)

s=0

—  |x(s)| = |xo| Captive ray !
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Stability properties

Denote A(x) = (ajj(x)), d x d symmetric definite positive matrix,
and £ a real valued function, k(x) > 0 ( a density ).

Denote A= (A,k),

1
Aq= ) zy: jajj(x)r(x)0;
and consider the wave operator

Py=0? — Ay
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Theorem (Burg-D-Le Rousseau 19')

Assume that A = (A, k) is smooth and that (w, T) (resp. (T, T))
satisfies (GCC) for P4.

Take B € U, an e-neighborhood of A in W1,
Then for € small enough, the (classical) observability estimate holds true

T T 2
Eu(0) < c/ /|8tu(t,x)\2/§dxdt (resp./ /‘m’(t,x)‘ Ii',dO'dt)
0 w 0 r on

for every solution of

Pguzafu—ABUZO, U|3Q=0

Corollary

| 5\

Under conditions above, we get exact controllability for Pg = (9? — Ap,
in time T.
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Comments

—  No geometry setting for the metric B !!!
—  One can replace Eu(0) by Egu(0).

—  One can also consider the same problem on a perturbed domain €,
with W2 perturbation.

metric A — B =A. W ¢ — perturbation

domain Q — Q. W2 ¢ — perturbation

— For a given metric B € W1o° we cannot decide if P is observable or
not.
In particular, what happens for B € C! and 99 of class C2 7?7

Next lecture by Jérome !
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Behavior of the HUM control process

O2u — Aqu = 2 (x)f in 0, T[xQ
(W) u=0 on 0, T[x00
(u(0), 0:u(0)) = (uo, u1) € HE x L2
We look for f € L2(]0, T[xQ), s.t

(u(T),0:u(T)) = (0,0)

By HUM and under (G.C.C), we can take f solution of
02f —Aaf =0 in ]0, T[xQ
(W)

f=0 on 10, T[x9Q
(£(0),0:(0)) = (fo, i) € L2 x H™*

18 / 33



The map
AN:H x[2—[2xH!

(uo, u1) — (fo, f1)

is an isomorphism; this is HUM optimal control operator.

Denote by f4 the HUM control attached to P4, i.e the solution of (W").
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Theorem (D-Lebeau, 2009)

In the setting above and under (G.C.C),
a) For all s > 0,

A HSL x HS — HS x H5 !
is an isomorphism.

b)
HAWTkD) — ¢(2‘kD)/\H < C2 k2

c) If M is a Riemannian manifold without boundary, N\ is a pseudo
differential operator.
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Behavior of the HUM control process

Let A = (A, x) be smooth ( C?) and such that (w, T) satisfies (GCC).

Theorem (Burg-D-Le Rousseau 19')

For any C?- neighborhood U of A, there exist A’ € U and an initial data
(uo, 1) , |[(Vauo, u1)|| 212 = 1, s.t the respective solutions u and v of

OFu — A gu = x5 (x)fa
Fv — DB v = x5 (x)fa
(u(0), 8u(0)) = (v(0), 3¢v(0)) = (uo, u1) € HE x L?

satisfy
Ea(u—v)(T) = Ea(v)(T) = 1/2

Moreover,
14 — farll 20, 7)xw) = 1/V8T

v

21 /33




Remarks
e (GCC) also satisfied by (w, T) for the metric A’.

—  fy is well defined.
@ For fixed initial data, the map
(C2(Q) — L2((0, T) x )
A= (A, Ii) — fA

is not continuous.
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Proof
— Choose A’ = (1+¢)A

— Take a sequence (u(’)‘, uf) such that ||(Vu, uf)|| 242 = 1 and
(uf, uf) — (0,0) in H} x L2,

—  f£—=0 in L[2((0,T)x Q). Hence ff —0 in H7((0,T) x Q)
and suppp(f&) C Char(9} — A4) = {7? — A(€,€) =0}

— suppu(vK) C Char(92 — Ay) = {72 — AL(£,€) =0}

— suppu(v¥) N suppu(fly) =

EA’(Vk)(T) Ea(v = 2/ / Xw 8tvk dxdt — 0.
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On the other hand, decompose this function v as v = v; + v» where

{ Oavi =x2()f0  (v1(0),0:v1(0)) = (o, u1)
Oave = x2(x)(fa—fa)  (v2(0),9:v2(0)) = (0,0)

Clearly (Vl(T),atvl(T)) == (0, 0), hence EA/(V)(T) = EA/(Vz)(T)

— Conclude with hyperbolic energy estimate.

24 / 33



Theorem (Control of smooth data)

Assume that (w, T) satisfies (GCC) for the metric A. Then for any metric
B of class C, and any « €]0, 1], the respective solutions u and v of

Pau = x2(x)fa in (0,T)xQ

Pgv = x2(x)fa in (0,T)xQ

u=v=0 on (0, T) x dQ

(1(0), 0¢u(0)) = (v(0), 8ev(0)) = (uo, u1) € H**(Q) x H¥(Q)

satisfy

1/2 o
Ex*(u = v)(T) < callA = Bl[%1 x ||(to, t1)|| prse o

for some constant ¢, > 0.
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Proof of the observability estimate

Strategy

—  First prove

T
Eu(0) < c / / 9wt x) Pt + [|(to, )] 2oy py-s
0 w
— In the smooth case :

Contradiction argument and propagation of micro local defect measures.
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—  Contradiction argument
Euk(0) =1, (u*) solution of (W),
T
Jo Lo | O (¢, x) [P dxdt + [|(ug, uf)”%%/\/})xH*l(M) <1/k
uk =0 in HY(0,T)x M),
ST L 10eu (8, x)Pdxdt — 0

Let 1 be a microlocal defect measure attached to vy .

— p=0over (0, T) x w and by propagation and GCC, =0
everywhere.

Contradiction with Euk(0) = 1.
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Back to non smooth metric

To be achieved : Prove a propagation result for p, in a low regularity
setting.
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Stability result : Boundaryless case ( Warm up )

Contradiction argument

Recall : A(x) = (ajj(x)), d x d symmetric definite positive matrix,
and £ a real valued function, k(x) > 0 ( a density ).

Denote A = (A, k),

20 ajj(x)k(x)0;

and consider the Klein-Gordon equation :

Pu=0?u—Aqu+u=0 on (0,T7)xQ
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— Consider a sequence of Ay = (Ak, k) s.t

| A — Ak|lwi~ — 0, and for each k, ||(ug’p, uf’p)HHlez =1

Peufl = 02uf — A g uf +uf =0 on (0,T)xQ

uf(O) = ug’p, 3tu£(0) = uf’p

T
/ /|8tuZ|2dxdt < 1/p.
0 w

and
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Denote ufj ~ Uy,

Prug = Ofux — D, ux + ug =0 on (0,T)xQ
I(ug up) | rxrz = 1

fOT fw |0s ug|2dxdt — 0

and assume
ug — 0 weaklyin  HY((0,T) x Q)

Let i be a microlocal defect measure attached to the sequence wuy.
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Poux = (Po — Pi)ug = (Aa, — Ag)ug — 0 in H!

Consider Q = q(t, x; Dt, D) € Op(SY).
And calculate the bracket

(1Po, Qluk ue) , = (184, = B, Qluss ), + 0(1/K)

Theorem (Calderon, Coifman-Meyer 85')

For any function m € WY>°(RI+1), the bracket[m, Q] continuously maps
L2(R+1) in itself and

[[m, QI 22 < Cllml| 1.0

Thus ([PO, Q| uk, uk) B — 0 and "Hpyp = 0.

w is invariant along the hamiltonian flow of Py (propagation).
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If we look carefully, the previous bracket calculus also works for a
referential metric of class C!.

This gives
tHPo:u =0

where the vector field Hp, has continuous coefficients.

—  How to deal with this measure equation ?

Next lecture by Jérome !
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