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Ficuke 3.5. The frequency distribution of the normal vibration modes of a ski.
The ski is clamped at the center to a shaker and driven. An output ac-
celerometer located on the afterbody records the vibration response shown.
[Reprinted with permission from R. L. Pizialli and €. D. Mote, Jr., “The Snow
ki as a Dynamic System,” J. Dynamic Syst. Meas. Control, Trans. ASME 94,
134 (1972))

Page 63: Natural frequency
with "good and bad
vibrations”

[DaV|d A L|nd et Scott P. Sanders, The Physics of Skiing: Skiing
at the Triple Point, 2nd edition; 2013]
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One way to kill bad vibrations?
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One way to kill bad vibrations? Use passively controls

[L. Rothemann, H. Schretter,
Active vibration damping of
the alpine ski; 2010]

a3 )]

formula that we will disc Chapter 8 on snow fric
(Colbeck, 1992. Drawn by Marilyn Aber, CRREL.)

Control your skis!

As Jean-Pierre?
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One way to kill bad vibrations? Use passively controls

[L. Rothemann, H. Schretter,
Active vibration damping of
the alpine ski; 2010]

How to do it actively?

Need to control a PDE, with
finite energy,

that is with saturating
controls.

formula that we will disc Chapter 8 on snow fric
(Colbeck, 1992. Drawn by Marilyn Aber, CRREL.)

Control your skis!

As Jean-Pierre? As Jean-Pierre would do!
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Given a PDE, there exists now a large variety on methods to
design linear controllers. It is well known that saturation can
reduce the performance or even destabilize the system, even for
finite-dimensional systems.

More precisely, even if

z=Az+ BKz (1)
is asymp. stable, it may hold that
z = Az + sat(BKz) (2)

is not globally asymptotically stable.
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Given a PDE, there exists now a large variety on methods to
design linear controllers. It is well known that saturation can
reduce the performance or even destabilize the system, even for
finite-dimensional systems.

More precisely, even if

z=Az+ BKz (1)
is asymp. stable, it may hold that
z = Az + sat(BKz) (2)

is not globally asymptotically stable.
It may exist new equilibrium, new limit cycles...
See e.g. [Tarbouriech, Garcia, Gomes da Silva Jr., Queinnec; 2011]
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Stability issues : a finite-dimensional example

Saturating a stabilizing feedback law can lead to instabilities.

dz 01 0

dt [1 o]z+ [—1] v
Open-loop eigenvalues: A\ = 1, A\p = —1. Setting u = Kz with
K = [13 7], the origin is globally asymptotically stable.

Considering u = sat(Kz) with saturation level us =5, we get
@ z =[-2 —3]": the trajectory converges to z* = [-50];
@ z =[-3 —3]": the trajectory diverges.
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Stability issues : a finite-dimensional example

Figure: (*): initial conditions, (0): equilibrium points
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Goal of this talk:

What happens if in (2), instead of matrices A, B..., we have
operators? More precisely, what happens if A generates a
semigroup and B is a bounded control operator? An example of
such a nonlinear PDE given by (2):

Wave equation with saturating in-domain control

Two objectives
@ Well-posedness
o Stability

of the wave equation in presence of a disturbed saturating control
with a Lyapunov method.

[Haraux; 18], [Martinez; 99], [Martinez and Vancostenoble; 00],
[Alabau-Boussouira; 12]
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1 Well-posedness and stability of linear wave equation with a
saturated in-domain control
Lyapunov method, LaSalle invariance principle
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1 Well-posedness and stability of linear wave equation with a
saturated in-domain control
Lyapunov method, LaSalle invariance principle

2 Design of a strict Lyapunov function for L2 saturation
Robustness result

3 With localized (L°°) saturation
strict Lyapunov method, robustness result
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1 Well-posedness and stability of linear wave equation with a
saturated in-domain control
Lyapunov method, LaSalle invariance principle

2 Design of a strict Lyapunov function for L2 saturation
Robustness result

3 With localized (L°°) saturation
strict Lyapunov method, robustness result

4 With non-monotone damping
comparison with a linear time-varying equation

5 Conclusion

7/47] C. Prieur Toulouse, Sept. 2019



1 — Wave equation with an in-domain control

1D wave equation with in-domain control.
Dynamics of the vibration:

zie(x,t) = zw(x,t)+ f(x,t), Vx € (0,1),t >0, (3)
Boundary conditions, Vt > 0,
z(0,t) = 0,

2Lt) = 0, (4)
and with the following initial condition, Vx € (0, 1),

z:(x,0) = ZzY(x),

where z% and z! stand respectively for the initial deflection and the
initial deflection speed.
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When closing the loop with a linear control

Let us define the linear control by
f(x,t) = —az(x,t),x € (0,1), Vt >0, (6)

and consider the energy

1
=5 /(zf + z2)dx
Formal computation. Along the solutions to (3), (4) and (6):
E = fol (2¢2zut — aZ2 + 2t 2y ) dx
= — fo azt 2dx + [zez 328
= - fo azid

Thus, it a> 0, E is a (non strict) Lyapunov function.
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Using standard technics (Lumer-Philipps thereom (for the
well-posedness) and Huang-Priiss theorem (for the exp. stability)):

Proposition
Va >0, V(2% 2zt in H:= H}(0,1) x L(0,1),
31 solution (z,z:): [0,00) — H to (3)-(6).
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Using standard technics (Lumer-Philipps thereom (for the
well-posedness) and Huang-Priiss theorem (for the exp. stability)):

Proposition

Va >0, V(2% 2zt in H:= H}(0,1) x L(0,1),

3! solution (z, z:): [0,00) — H to (3)-(6). Moreover, 3 C, > 0,
such that, for any initial condition H, it holds, Vt > 0,

HZHH(}(O,I) + ||ZtHL2(0,1) < Ce_”t(HZOHHg(o,l) + ”Zl||L2(0,1))-
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Using standard technics (Lumer-Philipps thereom (for the
well-posedness) and Huang-Priiss theorem (for the exp. stability)):

Proposition

Va >0, V(2% 2zt in H:= H}(0,1) x L(0,1),

3! solution (z, z:): [0,00) — H to (3)-(6). Moreover, 3 C, > 0,
such that, for any initial condition H, it holds, Vt > 0,

HZHH(}(O,l) + ||ZtHL2(0,1) < Ce_”t(HZOHHg(o,l) + ”Zl||L2(0,1))-

In the previous proposition:
@ stability
@ attractivity of the equilibrium

@ with an exponential speed
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When closing the loop with a saturating control

Let us consider now the nonlinear control

f(x,t) = —sat(az(x, t)), x € (0,1), Vt >0, (7)

where sat is the localized saturated map:
sat(o)

o if o] <1
sign(o) else

sat(o) = {

Equation (3) in closed loop with the control (7) becomes
Zit = zy — sat(az) (8)

A formal computation gives, along the solutions to (8) and (4),

_ 1
E= —/ zpsat(azy)dx
0

which asks to handle the nonlinearity z;sat(az;).
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Remark: Choice of the saturation map

[Slemrod; 89] and [Lasiecka, Seidman; 03] deal with L? saturation:
Given o : [0,1] — R, saty(o) is the function defined by

o(x) if {lof[2¢0,1) <1
sato(0)(x) = { o(x) else
||U||L2(o,1)

Here we consider localized saturation which is more physically
relevant:

sat(o(x)) = { o(x) if lo(x)] <1

sign(o(x)) else
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Difference between both saturations maps

e —tal2cos)) sato(0)(x) =
12 = Sal(2C0S)(X .
’ A a(x) if ol 201) <1
o4 o(x) else
0 ”U”LZ(OJ)
-04
sat(o(x)) =
- o(x) if |o(x)] <1
sign(o(x)) else

with o = 2 cos
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Well-posedness of this nonlinear PDE

Va >0, for all (2% z%) in (H?(0,1) N H§(0,1)) x HE(0,1), there
exists a unique (strong) solution z: [0,00) — H2(0,1) N H}(0,1) to
(8) with the boundary conditions (4) and the initial condition (5).
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Consider

Al < 5 > - ( Uxx—SVat(av) )

with the domain D(A;) = (H?(0,1) N H3(0,1)) x H3(0,1).

Let us use a generalization of Lumer-Phillips theorem which is the
so-called Crandall-Liggett theorem, as given in [Barbu; 1976]. See
also [Brezis; 1973] and [Miyadera; 1992].

Again two conditions
>,<u><€>>> =0
v v H

© A; is dissipative, that is
@ For all A >0, D(A1) C Ran(/ — M\A;)

<t

(i (2)
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First item: Easy step!
Instead of proving

({5 () (2)-(2)), o

check, for all ( . ) € H (= H}0,1)

(i (2) (1)),

To do that, using the definition of A;, and of the scalar product in
HE(0,1) x L2(0,1), it is equal to:

3 v () (x)dx + [y (ux(x) — sat(av(x)))v(x)dx
= fol Voo (X) tx (x) dx + fo U (X) v (x)dx — fol sat(av(x))v(x)dx
— [ GOVOIRES — [ sat(a v(x))vxde < 0

due to the boundary and since a > 0.
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linear ODE.
> € D(A1) such that

Second item asks to deal with a non
Let < : > € H we have to find (

<2 ‘:z

(1 - \A) (

<t =
~—
I
A~
< <
~—

that is
0d—A\v=u
V— M —sat(a?))=v,

In particular, we have to find i such that

- 1. a,. 1 1
v sat(X(u —u)) = 1V e
i(0)=1d(1)=0

holds.
Nonhomogeneous nonlinear ODE with two boundary conditions
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Lemma

If a is nonnegative and ) is positive, then there exists i solution to

To prove this lemma, let us introduce the following map

T: L%(0,1) — L3(0,1),
y = z=T(y),

where z = T(y) is the unique solution to

Zxx — %Z = _%V - %U—i— Sat(%(y - u)) )
z(0)=2z(1)=0.
Prove that 7 is well defined and apply the Schauder fixed-point
theorem (see e.g., [Coron; 2007]), to deduce that there exists y
such that 7(y) =y
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Lemma

If a is nonnegative and ) is positive, then there exists i solution to

Uxx — )\2” - Sat(%( ) =
#(0) = (1) = 0

To prove this lemma, let us introduce the following map

T: L%(0,1) — L3(0,1),
y = z=T(y),

where z = T(y) is the unique solution to

Zxx — %Z = _%V - %U—i— Sat(%(y_ u)) )
z(0)=2z(1)=0.

Prove that 7 is well defined and apply the Schauder fixed-point
theorem (see e.g., [Coron; 2007]), to deduce that there exists y
such that T(y) =

i =y solves (9)
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Global asymptotic stability of this nonlinear PDE

Va >0, for all (z°,z%) in (H?(0,1) N HE(0,1)) x HE(0,1), the
solution to (8) with the boundary conditions (4) and the initial
condition (5) satisfies the following stability property, Vt > 0,

12(-s ) k2 g0,1) + 112e (- D)l 20,1y < ||ZO||H1(0,1) + ||Zl||L2(O,1) )
0 0

together with the attractivity property

(., t)“Hg(0,1) + |z¢ (-, )l 20,1) = 0, ast— 0.
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Due to Theorem 1, the formal computation
_ 1
E= —/ zisat(az)dx
0

makes sense. This is only a weak Lyapunov function £ < 0

(the state is (z, z;), and there is no —z2).
To be able to apply LaSalle's Invariance Principle, we have to
check that the trajectories are precompact
(see e.g. [Dafermos, Slemrod; 1973]).
It comes from:

Lemma

The canonical embedding from D(A;), equipped with the graph
norm, into H3(0,1) x L2(0,1) is compact.
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Sketch of the proof of

The canonical embedding from D(A;), equipped with the graph
norm, into H3(0,1) x L2(0,1) is compact.

Consider a sequence ( 3" > in D(A1), which is bounded with
n /7 neN
the graph norm, that is 3M > 0, Vn € N,

2
C )y = 1CET 2 ()
Vp D(AY) Vn Vn
1
= [l
0

+ |ug - asat(v,,)‘z)dx <M

2 2
.

From that, we deduce that fol(]v,,\2 + |v/[*)dx and

f01(|u:,|2 + |u!’|?)dx are bounded.

Thus there exists a subsequence which converges in

H§(0,1) x L2(0,1). O
21+ N



Using the dissipativity of A1, and previous lemma the trajectory

< Z(+t) > is precompact in H3(0,1) x L2(0,1).
Zt('7 t)

(
Moreover the w-limit set w [( (( 0) >] C D(A1), is not empty

0)

and invariant with respect to the nonlinear semigroup T(t) (see
[Slemrod; 1989]).
We now use LaSalle’s invariance principle to show that

(500 )| -

Therefore the convergence property holds. O
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Remark: Boundary control

1D wave equation with a boundary control.
Dynamics: Vx € (0,1),t > 0,

zi(x,t) = zw(x,t),
Boundary conditions: Vt > 0,

z(0,t) = 0,
z(1,t) = —sat(bz(1,t)),

In the same work, stability proof using the sector condition
+ strict Lyapunov function.
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2 — Strict Lyapunov function

For the wave equation+ saturated in-domain control, a non-strict
Lyapunov function has been computed.
@ Thus a priori no robustness margin.
What happens in presence of noise?
o For linear PDE, we have exponential convergence
(see Proposition on Slide 10).
Do we have exp. stability for the nonlinear PDE?

Rewrite the wave equation as a abstract control system:

d
£ = Az + Bu,
z(0) = z.

There exists a self-adjoint and pos. def. P € L(H) s.t.
(A~ BB")z,Pz,) + (Pz,(A— BB )2) < —|zIy, Yz € D(A)
(10)
2/ R T



In presence of saturated input and disturbances

Consider the L2 saturated case

dz

9 _ Az — Bsato(B*

gr ~ Az~ Beana(B2), (11)
z(0) = z,
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In presence of saturated input and disturbances

Consider the L2 saturated case + disturbance

dz

— =Az—-B B* d

= z — Bsaty(B*z + d), (1)
z(0) = z,

where d : (0,00) — L?(0,1) is a disturbance.
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In presence of saturated input and disturbances

Consider the L2 saturated case + disturbance

dz

— = Az — Bsaty(B* d

g~ Az~ Beaty(Bz+ ), (11)
z(0) = zo,

where d : (0,00) — L2(0,1) is a disturbance.

Recall the L2 saturation: Given u: [0,1] — R, saty(0) is the
o if [lofl 20,1y <1

function defined by sats(o) = { else

o
||U||L2(O,1)
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In presence of saturated input and disturbances

Consider the L2 saturated case + disturbance

dz

— =Az—-B B* d

o z — Bsaty(B*z + d), (1)
z(0) = z,

where d : (0,00) — L(0,1) is a disturbance.

Recall the L2 saturation: Given u: [0,1] — R, saty(0) is the
o if [|ofl20,1) <1

function defined by saty(0) = { else

||U||L2(0,1)

What can be said about the exp. stability when d =0
and about the robustness in presence of d?

25/4 C. Prieur Toulouse, Sept. 2019



Input-to-State Stability (ISS) definition

A positive definite function V' : H — R>q is said to be an
ISS-Lyapunov function with respect to d if 3 two class Ko
functions « and p such that, for any solution to (11)

d

- V(@) = —alllzllm) + p(lldll 20.0))-

Remark: Of course ISS Lyapunov function
+ 3 two functions a and @ of class! K such that

alllzln) < V(z) <alllzllw) vz € H

= the origin of (11) with d = 0 is globally asymptotically stable.

Yo 1 [0,00) — [0, 00) is of class K if it is continuous, zero at zero and
increasing. It is of class K if it is moreover unbounded.
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Input-to-state stability result

Suppose that Assumption 1 holds and let P € L(H) be a

self-adjoint and positive operator satisfying (10). Then, there
exists M such that

V(2) := (Pz,2)p + M||z||3, (12)

is an ISS-Lyapunov function for (11).

The proof follows the finite-dimensional case considered in
[Liu, Chitour, and Sontag; 1996].
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Sketch of the proof

Let us consider the following candidate Lyapunov function
V(z) == (Pz,z)n + M| 2},

Along the strong solutions to (11), with A = A — BB*

%(Pz,zﬂ, = (Pz,Az)y + (PAz,z)y
+ 2(PB(saty(B*z) — sata(B*z + d)), z)H
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Sketch of the proof

Let us consider the following candidate Lyapunov function
V(z) = (Pz,z)n + M| 2|},
Along the strong solutions to (11), with A= A — BB*

d . -
—(Pz,z)y = (Pz,Az)y + (PAz,z)y

dt
+ 2(PB(B*z — saty(B*z), z)y
+ 2(PB(saty(B*z) — saty(B*z + d)),z)y
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Sketch of the proof

Let us consider the following candidate Lyapunov function
V(z) = (Pz,z)n + M| 2|},

Along the strong solutions to (11), with A= A — BB*

d ~ -
E<PZ’Z>H = (Pz,Az)y + (PAz,z)y

+2(PB(B*z — saty(B*z),z)n

+ 2(PB(saty(B*z) — sat2(B*z + d)), z)H
<—||zlI3+211B* 2l 20,1y | Pll ()| B* 2 — sata(B*2) | 12(0.1)

+ 2(saty(B*z) — sata(B*z + d), B*Pz)2(01),
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Sketch of the proof

Let us consider the following candidate Lyapunov function
V(z) = (Pz,z)n + M| 2|},

Along the strong solutions to (11), with A = A — BB*

jt<Pz 2V = (Pz,Az)y + (PAz,z)y
+2(PB(B*z — saty(B*z),z)y
+ 2(PB(saty(B*z) — sata(B*z + d)),z)y
<—|2ll}+21B*z|l2]| Pllc(m)|| Bz — sati2(01)(B*2)ll 2(0.1)
+ 2(sata(B*z) — sata(B*z + d), B*Pz)2(0,1),
— ll2llf + 211B*2l| 2(0.1) I Pll o1 | B*z — sata(B*2) |l 2(0.1)
+ 2k||d|| 20,0l B*[| £ (r,22(0,0) [ Pll ey 121 1,

using saty Lipchitz, Cauchy-Schwarz inequality and the fact that

B* is bounded.
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Moreover using Hd||1_2(o,1)||ZHH < 5|]d||i2(071) + é||sz_, and
|B*z — sata(B*2)||12(0,1) < (sat2(B*z), B*z)2(0,1), We get

||B*%(H.L2(O,1))PH%(H)> 2|12,

d
= (P < |1-
dt< Z7Z>H_ ( 1

+2([B"| (h.12(02)) | Pll ey | 21| H{sat2(B*2), B Z) 12(0 1)
+ke1||d 7201y

where €71 is a positive value that will be selected later.

Thus

d
EW(Z) < good term + bad term + d?
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Secondly, using the dissipativity of the operator Agat,
(sata(B*z) — sata(B*z + d), B*z),2(0,1) < Col|d|[12(0,1), and
Izl klldl20.0) < 2112117 + e2lldl1 294y, one has

2M d

5 2l =Mzl ((Az, 2) + (2, A2)n)

— 2MH2HH<Bsa‘t2(B*Z + d),Z)H
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Secondly, using the dissipativity of the operator Agat,
(sata(B*z) — sata(B*z + d), B*z),2(0,1) < Col|d|[12(0,1), and
Izl klldl20.0) < 2112117 + e2lldl1 294y, one has

2M d

5 2l =Mzl ((Az, 2) + (2, A2)n)

— 2M||z||y(Bsata(B*z + d), z)H
< — 2M||z||1 ((sat2(B*z), B*z) 20 1)
+ (saty(B*z) — saty(B*z + d), B*Z>L2(0,1))
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Secondly, using the dissipativity of the operator Agat,
(sata(B*z) — sata(B*z + d), B*z),2(0,1) < Col|d|[12(0,1), and
Izl klldl20.0) < 2112117 + e2lldl1 294y, one has

2M d

5 2l =Mzl ((Az, 2) + (2, A2)n)

— 2M||z||y{Bsata(B*z + d), z)n
< — ZMHZHH((satg(B*Z), B*Z>L2(0,1)

+ (saty(B*z) — saty(B*z + d), B*z)2(0.1))
< — 2Mz|luisata(B*2), B*2)iz(on)

+ 2MGo||z|| 1l dIl 2(0,1)
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Secondly, using the dissipativity of the operator Agat,
(sata(B*z) — sata(B*z + d), B*z),2(0,1) < Col|d|[12(0,1), and
Izl klldl20.0) < 2112117 + e2lldl1 294y, one has

2:/))\/’ th 13 =M||z|| ((Az, 21y + (2, AZ)p)

— 2M||z||y{Bsata(B*z + d), z)n
< — ZMHZHH((satg(B*Z), B*Z>L2(0,1)

+ (saty(B*z) — saty(B*z + d), B*z)2(0.1))
< — 2Mz|luisata(B*2), B*2)iz(on)

+ 2MGo||z|| 1l dIl 2(0,1)

<—2M|z||n(sat2(B*z), B*z) 2(0 1)
2/\/IC0

+ |23 +2MCoza|ld||Z2(g 1)

where ¢ is a positive value that has to be selected. For an
appropriate choice of M, €1 and 2 we deduce the result. g
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3 — with localized saturation map

What happens with sat instead of sat»? What is the speed of
convergence of

{ %z = Az — Bsat(B*z),

z(0) = 2, (13)
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Theorem

Hence, the origin of (13) is semi-globally exponentially stable in
D(A), that is for any positive r and any zy in D(A) satisfying
|z0l| p(ay < r, there exist two positive constants p := p(r) and
K := K(r) such that

| W, (t)z0|ly < Ke "||z0]|l, V¥t > 0. (14)

v
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Theorem

Hence, the origin of (13) is semi-globally exponentially stable in
D(A), that is for any positive r and any zy in D(A) satisfying
|z0l| p(ay < r, there exist two positive constants p := p(r) and
K := K(r) such that

| W, (t)z0|ly < Ke "||z0]|l, V¥t > 0. (14)

v

Remarks e on Korteweg-de Vries equation: [Rosier, Zhang; 2006]
and [Marx, Cerpa, CP, Andrieu; 2017].

We may deduce a global asymptotic stability (but without any
estimation of the convergence speed).
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Theorem

Hence, the origin of (13) is semi-globally exponentially stable in
D(A), that is for any positive r and any zy in D(A) satisfying
|z0l| p(ay < r, there exist two positive constants p := p(r) and
K := K(r) such that

| W, (t)z0|ly < Ke "||z0]|l, V¥t > 0. (14)

v

Remarks e on Korteweg-de Vries equation: [Rosier, Zhang; 2006]
and [Marx, Cerpa, CP, Andrieu; 2017].

We may deduce a global asymptotic stability (but without any
estimation of the convergence speed).

e In our work the monotonicity is crucial and also only 1D

See [Martinez, Vancostenoble; 2000] for N < 2. See also last part
of this presentation for N = 1.
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Sketch of the proof

Let V/(z) be the Lyapunov function candidate defined by
z e D(A) = V(z) = (Pz,2)y + M|z|3,,

where M > 0 will be selected later. As before, using the
dissipativity of the operator A — B*B, one has

d -~ ~
Szl < —2MB 2 st (B Doy, (15)
and
d 2 * * *
E<PZ7Z>H < _”ZHH +2<B PZ, B*z — Sat(B Z)>L2(O,l)'

The term 2(B*Pz, B*z — sat(B*z))2(0,1) is " controlled”
differently.
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Consider r > 0 and a strong solution for (13), whose initial
condition zy € D(A) is such that

lz0llpeay < r

First note that, from the dissipativity, it implies ||z(t)||p(a) < r for

all t > 0.
‘(B*PZ7 B*z — Sat(B*Z)>L2(O71)’
< ||B*Pz| 1 (0,1)l|B*z — sat(B*2) 10,1
< C||Pz||pa)l|B*z — sat(B*2)|11(0,1)
< C'IPll ccoap lIzllpay(sat(B*z), B*z) 2(0,1)
Therefore
@< Izl = 2(M = C'l|Pllz(peay 12l pay) (sat(B*2), B*2)
< _HZ||H_2(M C'|Pllz(peayr){sat(B*z), B*z)
< —llzlIE
for a suitable M. The result follows. =
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4 — Case of a non-monotone damping

Consider again the controlled wave equation:

zy =z +u, (t,x) € Ry x[0,1]
z(t,0) = z(t,1) =0, teR;
z(0,x) = zp(x), z:(0,x) = z1(x), x €0,1],

Nonlinear damping o law given by the damping

u(t,x) = —v/a(x)o(v/a(x)z(t, x)) where Vx € w, ap < a(x) < aco, a0 >

[Martinez; 99], [Martinez, Vancostenoble; 00] I
What about nonmonotone nonlinearities o? l
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Nonmonotone damping

A function ¢ is a nonmonotone damping if
1. it is locally Lipschitz
2. 0(0)=0
3. forall s € R, o(s)s >0
4

. the function o is differentiable at s = 0 with ¢/(0) = G,
where C; is a positive constant.
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Nonmonotone damping

for example: o(s) = sat (s — 35 sin(10s))

0.8
0.6
0.4

0.2 F

0.2
-0.4 1
-0.6

-0.8
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Regularity issues

Since the function o is (possibly) nonmonotone, then the
LaSalle’s Invariance Principle does not apply !

Moreover, the classical functional setting
H = Hy(0,1) x L*(0,1),

is not sufficient to ensure a L™ regularity for the state z;.

Our solution consists in using the functional setting

Hp := (WP(0,1) N H§(0,1)) x LP(0, 1),

where p € [1, 00].
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Main results

zZy = o — v/ a(x)o(v/a(x)z:), (t,x) € Ry x [0,1]
z(t,0) = z(t,1) =0, t € Ry (Sys)
z(0,x) = zo(x), z:(0,x) = z1(x), x € [0, 1].

Theorem [Chitour, Marx, CP; under submission] (well-posedness)

V initial condition (zp, z1) € Hoo, 3! solution
(z,2:) € L2(Ry; WHe(0, 1)) x WH(Ry; L(0,1)) to (Sys).
Moreover, one has

1(z, 2e) || Hoo (0,1) < 2max ([|20]] 120 (0,1), 122l Lo (0,1))
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Main results

zy = zo — v a(x)o(v/a(x)z), (t,x) € Ry x [0,1]
z(t,0) = z(t,1) =0, t e Ry (Sys)
z(0,x) = zo(x), z:(0,x) = z1(x), x € [0, 1].

Theorem [Chitour, Marx, CP; under submission] (convergence)
Given r > 0. Consider initial conditions in H, satisfying

(20, z1) | Hoo <7 -

Then, Vp € [2,00), 3 K := K(r) and u := p(r) such that

Iz, 22)ll1, < Ke™[[(20, 20)ll,, VE > 0.
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Well-posedness proof (1)

e Fixed-point theorem = existence and uniqueness in [0, T].
e The estimate is proved thanks to the following result

Theorem [Haraux; 2009]

Let us consider initial condition in Hy,. Let us introduce the
following functional

1
(2, 2) = /0 [F(z — z) + F(z + 20)]dx,

where F is any even and convex function. Then, the time
derivative of ¢ along the trajectories of (Sys) satisfies

d
a¢(z, Zt) S 0
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Well-posedness proof (2)

Due to the latter theorem, one has ¢(z,z:) < ¢(zp,z1), for all
t > 0. Then, the result follows by setting

F(s) := [Pos(|s| — 2 max([|z| .= (0,1), 121l ¢ 0,1))];
where

sifs>0,
Pos(s):= 1 0if s <0

This implies that ¢(z, z:) = 0 and then, for all t >0

1(z, 2e) | oo (0,1) < 2max (|29l oo (0,1)s 121l (0,1)) -

What about the asymptotic stability 7 I
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Consider (Sys), with initial conditions in Hs. Thanks to this
regularity:
1. Prove the result in Hy = H}(0,1) x L?(0,1)
2. Deduce the result in H, by an interpolation theorem
(Riesz-Thaurin theorem), with

H, = (W'P(0,1) N H3(0,1)) x LP(0,1)

Transforming the nonlinear time-invariant system as a trajectory of
a linear time-variant system.
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A detour via linear time-variant systems

System (Sys) can be seen as a trajectory of a linear time-variant
system (LTV).

zZy = z — a(x)d(t, x)z¢, (t,x) € Ry x[0,1],
z(t,0) = z(t,1) =0, teR4, (LTV-wave)
z(0,x) = zp(x), z:(0,x) = z1(x), x €[0,1],

where

olvalz) e 2o,
G, Val)z =0,

where C; = ¢/(0).
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Abstract system

Let us recall that Hy = H}(0,1) x L2(0,1) and let us introduce
U = L?(0,1). Consider the abstract system

d
=AY d(t)BB*y := Aq4(t)y,

y(T) =Y, 720,

(Abstract)

withy = [z z]', A: D(A) C Hy — Hy defined as

DA IER O T

with D(A) = (H?(0,1) N H3(0,1)) x H3(0,1).

(Sys) and (Abstract) share one trajectory, i.e. when 7 = 0.
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An abstract result

Proposition (for convergence result)
Suppose that there exist dy, d; > 0 such that

dy < d(t) < dy.

Then, if
{ 2y = Ay — doBB*y := Agy,
y(O) = )0,
is exponentially stable, the trajectory of (Abstract) with 7 =10
converges to 0.
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Lyapunov proof of this proposition

Exponential stability = 3 P € £(H,) and C > 0 such that
(Py, Ady)t, + (PAagyy, yym, < —Cllyl?,
Time derivative of the Lyapunov functional
V(y) == (Py,y)m, + MylI3,

. . o 2(di—do)|P
along the trajectories of (Abstract) with M = 2 —co)lIPll )
dol|Bll £(Hy, vy

)

dv
I(Y) < —CH)’H%b

Then,

P +M C
iy < e M o (€ ) ol ve = 0
m 1Pl + M
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Back to the proof of convergence result

Recall that
o(Va(x)z) /(2 £ 0
d(tvx) _ a(x)zt ) a( ) t # )
Gy, a(x)z: =0,
and that

(2, 2e) oo (0,1) < 2max ([lzg]| e (0,1), ll21]]L2o(0,1)) < 2r,

then

a(¢)

min —= < d(t, x)

dy =
¢€[-2y/asr2y/asr] &

< max @ = di.
te[-2/amr2vanr] &

Then, one can prove easily that

Gz 2611, < K(r)e (20, 21) | 1,

which is the result. [
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5 — Conclusion and further research lines

© Asymptotic stability in H, for non-monotone damping

@ Semi-global exponential stability in H for monotone damping

© Instead of wave equations, abstract operator theories could be
developped

Further research lines
@ What about quasilinear hyperbolic systems

z+N2z)z, =0
z(t,0) = Hz(t,1) + Bu(t)?

See [Coron, Ervedoza, Ghoshal, Glass, Perrollaz; 17],
and the current work of M. Dus for BV solutions.
@ N-dimensional wave equations ?
N < 2 in [Martinez, Vancostenoble; 2000]
7+ TS —




Bonus — Wave equation with a boundary control

g(t)
x=0 x=1
|
[
z(x, t)
1D wave equation with a boundary control.
Dynamics:
zi(x,t) = zw(x,t), Vx €(0,1),t >0, (16)
Boundary conditions, Vt > 0,
z(0,t) = O
b b 17
(L) = g(t). 4
and with the same initial condition, Vx € (0, 1),
z(x,0) = 2%x),
z(x,0) = Z(x). (18)
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When closing the loop with a linear boundary control

Let us define the linear control by
g(t) = —bz(1,t), x € (0,1), Vt >0 (19)
and consider
1 X 2 —ux 2
Ey, = 5 (e"(zt + zx)“dx + [ (e **(z+ — zy)“dXx,
Formal computation. Along the solutions to (16), (17) and (19):

Eo = Bt} (1 BY — e t(1+ bR) 2(L2)
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When closing the loop with a linear boundary control

Let us define the linear control by

g(t) = —bz(1,t), x € (0,1), Vt >0 (19)
and consider

1 X 2 — X 2

E;, = 5 (e"(zt + zx)“dx + [ (e **(z+ — zy)“dXx,
Formal computation. Along the solutions to (16), (17) and (19):
Ey = —pub+3(e(1—b)2—e "1+ b)?)z2(1,t)

Assuming b > 0 and letting 1 > 0 such that

e’(1 — b)? < e #(1 + b)?, it holds E; < —puE and thus E; is a
strict Lyapunov function and thus (16)-(19) is exponentially stable.
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When closing the loop with a saturating control

Let us consider now the nonlinear control
g(t) = —sat(bz(1,t)),Vt > 0. The boundary conditions become:

z(0,t) =0, z(1,t) = —sat(bz(1,t)) . (20)

Theorem (stability with boundary control)

Vb > 0, for all (2%,2z) in {(u,v), (u,v) €

H?(0,1) x H(lo)(O, 1), ux(1) + sat(bv(1)) =0, u(0) = 0}, the
solution to (16) with the boundary conditions (20) and the initial
condition (5) satisfies the following stability property, ¥Vt > 0,

26 s 02y + 70 Dlizony < 12 02y + 74201

together with the attractivity property

(., t)”H(lo)(o,l) + [|ze(-s )l 20,1) = 0, ast— o0 .

v
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To prove the well-posedness of the Cauchy problem we prove that

A, defined by
u v
()= (o)

with the domain D(Az) = {(u, v), (u,v) €
H?(0,1) x H(lo)(o, 1), v'(1) + sat(bv(1)) =0, u(0) =0} is a
semigroup of contraction.
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To prove the well-posedness of the Cauchy problem we prove that

A, defined by
u v
()= (o)

with the domain D(Az) = {(u, v), (u,v) €

H?(0,1) x H(lo)(O, 1), v'(1) + sat(bv(1)) =0, u(0) =0} is a
semigroup of contraction.

The global stability property comes directly from the dissipativity
of A2.

The global attractivity property comes from the following lemma:
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Lemma (semi-global exponential stability)
For all r > 0, there exists 1 > 0 such that, for all initial condition
satisfying
o2 192 2
[ ”HL2(0,1) + ||z ||H(10)(071) <r, (21)

it holds _
Ex < —pk

along the solutions to (16) with the boundary conditions (20).
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Sketch of the proof of this lemma

First note that by dissipativity of A, it holds that

w20 )

is a non-increasing function. Thus, for all t > 0,

z(.,0)
A ’ .
2 < Zt(.,O) > H
Now for all initial conditions satisfying (21), there exists ¢ # b
such that, for all t > 0,
(b—0)|ze(1,t)| <1

and thus the following local sector condition holds:
sat(bo)

t—

2(1,1) < \

/__, po Letting 0 = z(1,t), it holds
ey » (sat(bo) — bo)(sat(bo) —(b—c)o) <0
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We come back to the Lyapunov function candidate E,. Given
b > 0, using the previous inequality, we compute

Ey = —upE+ e'(o —sat(bo))? — e (o + sat(bo))?
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We come back to the Lyapunov function candidate E,. Given
b > 0, using the previous inequality, we compute

Ey = —upE+ e'(o —sat(bo))? — e (o + sat(bo))?
o T et —e™H — —c —el — e —c
S _IU’EZ + ( sat(bo) ) < 7e57 e_‘i + bbj»(tl;(b 7) c) ‘ —1 +Me;’rft_b£‘b ) )
X ( sat?bo‘) )
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We come back to the Lyapunov function candidate E,. Given
b > 0, using the previous inequality, we compute

Ey = —upE+ e'(o —sat(bo))? — e (o + sat(bo))?
o T et —e™H — —c —el —e™H —c
S _MEZ + ( sat(bo) ) < 7e‘}‘ = e_‘i —+ bbir(tl:(b 7) c) ‘ -1 +He;’rft_b£‘b ) >
X ( sat?bo‘) )
< —pk

with a suitable choice of constant values p and c.
The semi-global exponential stability follows. O
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