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Page 63: Natural frequency
with ”good and bad
vibrations”

[David A. Lind et Scott P. Sanders, The Physics of Skiing: Skiing
at the Triple Point, 2nd edition; 2013]
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One way to kill bad vibrations?

Control your skis!

As Jean-Pierre?

Use passively controls
[L. Rothemann, H. Schretter,
Active vibration damping of
the alpine ski; 2010]

How to do it actively?
Need to control a PDE, with
finite energy,
that is with saturating
controls.

As Jean-Pierre would do!
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Given a PDE, there exists now a large variety on methods to
design linear controllers. It is well known that saturation can
reduce the performance or even destabilize the system, even for
finite-dimensional systems.
More precisely, even if

ż = Az + BKz (1)

is asymp. stable, it may hold that

ż = Az + sat(BKz) (2)

is not globally asymptotically stable.
It may exist new equilibrium, new limit cycles...
See e.g. [Tarbouriech, Garcia, Gomes da Silva Jr., Queinnec; 2011]
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Stability issues : a finite-dimensional example

Saturating a stabilizing feedback law can lead to instabilities.

An illustrative example

dz

dt
=

[
0 1
1 0

]
z +

[
0
−1

]
u

Open-loop eigenvalues: λ1 = 1, λ2 = −1. Setting u = Kz with
K =

[
13 7

]
, the origin is globally asymptotically stable.

Considering u = sat(Kz) with saturation level us = 5, we get

1 z0 = [−2 − 3]>: the trajectory converges to z? = [−5 0]>;

2 z0 = [−3 − 3]>: the trajectory diverges.

5/47 C. Prieur Toulouse, Sept. 2019



Stability issues : a finite-dimensional example

Figure: (*): initial conditions, (o): equilibrium points
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Goal of this talk:
What happens if in (2), instead of matrices A, B..., we have
operators? More precisely, what happens if A generates a
semigroup and B is a bounded control operator? An example of
such a nonlinear PDE given by (2):
Wave equation with saturating in-domain control

Two objectives

Well-posedness

Stability

of the wave equation in presence of a disturbed saturating control
with a Lyapunov method.

[Haraux; 18], [Martinez; 99], [Martinez and Vancostenoble; 00],
[Alabau-Boussouira; 12]
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Outline

1 Well-posedness and stability of linear wave equation with a
saturated in-domain control

Lyapunov method, LaSalle invariance principle

2 Design of a strict Lyapunov function for L2 saturation
Robustness result

3 With localized (L∞) saturation
strict Lyapunov method, robustness result

4 With non-monotone damping
comparison with a linear time-varying equation

5 Conclusion
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1 – Wave equation with an in-domain control

f (x , t)

z(x , t)

x = 0 x = 1

1D wave equation with in-domain control.
Dynamics of the vibration:

ztt(x , t) = zxx(x , t) + f (x , t), ∀x ∈ (0, 1), t ≥ 0, (3)

Boundary conditions, ∀t ≥ 0,

z(0, t) = 0 ,
z(1, t) = 0 ,

(4)

and with the following initial condition, ∀x ∈ (0, 1),

z(x , 0) = z0(x) ,
zt(x , 0) = z1(x) ,

(5)

where z0 and z1 stand respectively for the initial deflection and the
initial deflection speed.
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When closing the loop with a linear control

Let us define the linear control by

f (x , t) = −azt(x , t), x ∈ (0, 1), ∀t ≥ 0, (6)

and consider the energy

E =
1

2

∫
(z2x + z2t )dx .

Formal computation. Along the solutions to (3), (4) and (6):

Ė =
∫ 1
0 (zxzxt − az2t + ztzxx)dx

= −
∫ 1
0 az2t dx + [ztzx ]x=1

x=0

= −
∫ 1
0 az2t dx

Thus, it a > 0, E is a (non strict) Lyapunov function.
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Using standard technics (Lumer-Philipps thereom (for the
well-posedness) and Huang-Prüss theorem (for the exp. stability)):

Proposition

∀a > 0, ∀(z0, z1) in H := H1
0 (0, 1)× L2(0, 1),

∃ ! solution (z , zt): [0,∞)→ H to (3)-(6). Moreover, ∃ C , µ > 0,
such that, for any initial condition H, it holds, ∀t ≥ 0,

‖z‖H1
0 (0,1)

+ ‖zt‖L2(0,1) ≤ Ce−µt(‖z0‖H1
0 (0,1)

+ ‖z1‖L2(0,1)).

In the previous proposition:

stability

attractivity of the equilibrium

with an exponential speed
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When closing the loop with a saturating control

Let us consider now the nonlinear control

f (x , t) = −sat(azt(x , t)), x ∈ (0, 1), ∀t ≥ 0, (7)

where sat is the localized saturated map:
sat(σ)

σ
sat(σ) =

{
σ if |σ| < 1
sign(σ) else

Equation (3) in closed loop with the control (7) becomes

ztt = zxx − sat(azt) (8)

A formal computation gives, along the solutions to (8) and (4),

Ė = −
∫ 1

0
ztsat(azt)dx

which asks to handle the nonlinearity ztsat(azt).
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Remark: Choice of the saturation map

[Slemrod; 89] and [Lasiecka, Seidman; 03] deal with L2 saturation:
Given σ : [0, 1]→ R, sat2(σ) is the function defined by

sat2(σ)(x) =

{
σ(x) if ‖σ‖L2(0,1) < 1
σ(x)

‖σ‖L2(0,1)
else

Here we consider localized saturation which is more physically
relevant:

sat(σ(x)) =

{
σ(x) if |σ(x)| < 1
sign(σ(x)) else
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Difference between both saturations maps

with σ = 2 cos

sat2(σ)(x) ={
σ(x) if ‖σ‖L2(0,1) < 1
σ(x)

‖σ‖L2(0,1)
else

sat(σ(x)) ={
σ(x) if |σ(x)| < 1
sign(σ(x)) else
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Well-posedness of this nonlinear PDE

Theorem 1 [CP, Tarbouriech, Gomes da Silva Jr; 2016]

∀a ≥ 0, for all (z0, z1) in (H2(0, 1) ∩ H1
0 (0, 1))× H1

0 (0, 1), there
exists a unique (strong) solution z : [0,∞)→ H2(0, 1)∩H1

0 (0, 1) to
(8) with the boundary conditions (4) and the initial condition (5).

14/47 C. Prieur Toulouse, Sept. 2019



Consider

A1

(
u
v

)
=

(
v

uxx − sat(av)

)
with the domain D(A1) = (H2(0, 1) ∩ H1

0 (0, 1))× H1
0 (0, 1).

Let us use a generalization of Lumer-Phillips theorem which is the
so-called Crandall-Liggett theorem, as given in [Barbu; 1976]. See
also [Brezis; 1973] and [Miyadera; 1992].
Again two conditions

1 A1 is dissipative, that is

<
(
〈A1

(
u
v

)
− A1

(
ũ
ṽ

)
,

(
u
v

)
−
(

ũ
ṽ

)
〉
)

H

≤ 0

2 For all λ > 0, D(A1) ⊂ Ran(I − λA1)
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First item: Easy step!
Instead of proving

<
(
〈A1

(
u
v

)
− A1

(
ũ
ṽ

)
,

(
u
v

)
−
(

ũ
ṽ

)
〉
)

H

≤ 0, let us

check, for all

(
u
v

)
∈ H (= H1

0 (0, 1)× L2(0, 1)):

<
(
〈A1

(
u
v

)
,

(
u
v

)
〉
)

H

≤ 0

To do that, using the definition of A1, and of the scalar product in
H1
0 (0, 1)× L2(0, 1), it is equal to:∫ 1

0 vx(x)ux(x)dx +
∫ 1
0 (uxx(x)− sat(a v(x)))v(x)dx ,

=
∫ 1
0 vx(x)ux(x)dx +

∫ 1
0 uxx(x)v(x)dx −

∫ 1
0 sat(a v(x))v(x)dx

= [ux(x)v(x)]x=1
x=0 −

∫ 1
0 sat(a v(x))v(x)dx ≤ 0

due to the boundary and since a ≥ 0.
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Second item asks to deal with a nonlinear ODE.

Let

(
u
v

)
∈ H we have to find

(
ũ
ṽ

)
∈ D(A1) such that

(I − λA1)

(
ũ
ṽ

)
=

(
u
v

)
that is {

ũ − λṽ = u ,
ṽ − λ(ũxx − sat(a ṽ)) = v ,

In particular, we have to find ũ such that

ũxx −
1

λ2
ũ − sat(

a

λ
(ũ − u)) = − 1

λ
v − 1

λ2
u

ũ(0) = ũ(1) = 0

holds.
Nonhomogeneous nonlinear ODE with two boundary conditions
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Lemma

If a is nonnegative and λ is positive, then there exists ũ solution to

ũxx − 1
λ2
ũ − sat( a

λ(ũ − u)) = − 1
λv −

1
λ2
u

ũ(0) = ũ(1) = 0
(9)

To prove this lemma, let us introduce the following map

T : L2(0, 1) → L2(0, 1) ,
y 7→ z = T (y) ,

where z = T (y) is the unique solution to

zxx − 1
λ2
z = − 1

λv −
1
λ2
u + sat( a

λ(y − u)) ,
z(0) = z(1) = 0 .

Prove that T is well defined and apply the Schauder fixed-point
theorem (see e.g., [Coron; 2007]), to deduce that there exists y
such that T (y) = y

ũ = y solves (9)
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Global asymptotic stability of this nonlinear PDE

Theorem 2

∀a > 0, for all (z0, z1) in (H2(0, 1) ∩ H1
0 (0, 1))× H1

0 (0, 1), the
solution to (8) with the boundary conditions (4) and the initial
condition (5) satisfies the following stability property, ∀t ≥ 0,

‖z(., t)‖H1
0 (0,1)

+ ‖zt(., t)‖L2(0,1) ≤ ‖z0‖H1
0 (0,1)

+ ‖z1‖L2(0,1) ,

together with the attractivity property

‖z(., t)‖H1
0 (0,1)

+ ‖zt(., t)‖L2(0,1) → 0, as t →∞ .
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Due to Theorem 1, the formal computation

Ė = −
∫ 1

0
ztsat(azt)dx

makes sense. This is only a weak Lyapunov function Ė ≤ 0
(the state is (z , zt), and there is no −z2).

To be able to apply LaSalle’s Invariance Principle, we have to
check that the trajectories are precompact
(see e.g. [Dafermos, Slemrod; 1973]).
It comes from:

Lemma

The canonical embedding from D(A1), equipped with the graph
norm, into H1

0 (0, 1)× L2(0, 1) is compact.
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Sketch of the proof of

The canonical embedding from D(A1), equipped with the graph
norm, into H1

0 (0, 1)× L2(0, 1) is compact.

Consider a sequence

(
un
vn

)
n∈N

in D(A1), which is bounded with

the graph norm, that is ∃M > 0, ∀n ∈ N,∥∥∥∥( un
vn

)∥∥∥∥2
D(A1)

:=

∥∥∥∥( un
vn

)∥∥∥∥2 +

∥∥∥∥A1

(
un
vn

)∥∥∥∥2 ,

=

∫ 1

0
(
∣∣u′n∣∣2 + |vn|2 +

∣∣v ′n∣∣2
+
∣∣u′′n − asat(vn)

∣∣2)dx < M

From that, we deduce that
∫ 1
0 (|vn|2 + |v ′n|

2)dx and∫ 1
0 (|u′n|

2 + |u′′n |
2)dx are bounded.

Thus there exists a subsequence which converges in
H1
0 (0, 1)× L2(0, 1). �
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Using the dissipativity of A1, and previous lemma the trajectory(
z(., t)
zt(., t)

)
is precompact in H1

0 (0, 1)× L2(0, 1).

Moreover the ω-limit set ω

[(
z(., 0)
zt(., 0)

)]
⊂ D(A1), is not empty

and invariant with respect to the nonlinear semigroup T (t) (see
[Slemrod; 1989]).
We now use LaSalle’s invariance principle to show that

ω

[(
z(., 0)
zt(., 0)

)]
= {0}.

Therefore the convergence property holds. �
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Remark: Boundary control
g(t)

z(x , t)

x = 0 x = 1

1D wave equation with a boundary control.
Dynamics: ∀x ∈ (0, 1), t ≥ 0,

ztt(x , t) = zxx(x , t),

Boundary conditions: ∀t ≥ 0,

z(0, t) = 0 ,
zx(1, t) = −sat(bzt(1, t)) ,

In the same work, stability proof using the sector condition
+ strict Lyapunov function.

Wave equation and saturated boundary control
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2 – Strict Lyapunov function

For the wave equation+ saturated in-domain control, a non-strict
Lyapunov function has been computed.

Thus a priori no robustness margin.
What happens in presence of noise?

For linear PDE, we have exponential convergence
(see Proposition on Slide 10).
Do we have exp. stability for the nonlinear PDE?

Rewrite the wave equation as a abstract control system:
dz

dt
= Az + Bu,

z(0) = z0.

There exists a self-adjoint and pos. def. P ∈ L(H) s.t.

〈(A− BB?)z ,Pz , 〉H + 〈Pz , (A− BB?)z〉H ≤ −‖z‖2H , ∀z ∈ D(A)
(10)
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In presence of saturated input and disturbances

Consider the L2 saturated case
dz

dt
= Az − Bsat2(B?z),

z(0) = z0,
(11)
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In presence of saturated input and disturbances

Consider the L2 saturated case + disturbance
dz

dt
= Az − Bsat2(B?z + d),

z(0) = z0,
(11)

where d : (0,∞)→ L2(0, 1) is a disturbance.
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function defined by sat2(σ) =

{
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σ
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else

What can be said about the exp. stability when d = 0
and about the robustness in presence of d?
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ISS notion

Input-to-State Stability (ISS) definition

A positive definite function V : H → R≥0 is said to be an
ISS-Lyapunov function with respect to d if ∃ two class K∞
functions α and ρ such that, for any solution to (11)

d

dt
V (z) ≤ −α(‖z‖H) + ρ(‖d‖L2(0,1)).

Remark: Of course ISS Lyapunov function
+ ∃ two functions α and α of class1 K such that

α(‖z‖H) ≤ V (z) ≤ α(‖z‖H) ,∀z ∈ H

⇒ the origin of (11) with d = 0 is globally asymptotically stable.

1α : [0,∞) → [0,∞) is of class K if it is continuous, zero at zero and
increasing. It is of class K∞ if it is moreover unbounded.
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Input-to-state stability result

Theorem 3 [Marx, Chitour, CP; to appear]

Suppose that Assumption 1 holds and let P ∈ L(H) be a
self-adjoint and positive operator satisfying (10). Then, there
exists M such that

V (z) := 〈Pz , z〉H + M‖z‖3H (12)

is an ISS-Lyapunov function for (11).

The proof follows the finite-dimensional case considered in
[Liu, Chitour, and Sontag; 1996].
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Sketch of the proof

Let us consider the following candidate Lyapunov function

V (z) := 〈Pz , z〉H + M‖z‖3H

Along the strong solutions to (11), with Ã = A− BB?

d

dt
〈Pz , z〉H = 〈Pz ,Az〉H + 〈PAz , z〉H

+ 2〈PB(sat2(B?z)− sat2(B?z + d)), z〉H
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+ 2〈PB(B?z − satU(B?z), z〉H
+ 2〈PB(sat2(B?z)− sat2(B?z + d)), z〉H
≤−‖z‖2H+2‖B?z‖L2(0,1)‖P‖L(H)‖B?z − sat2(B?z)‖L2(0,1)

+ 2〈sat2(B?z)− sat2(B?z + d),B?Pz〉L2(0,1),

28/47 C. Prieur Toulouse, Sept. 2019
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Let us consider the following candidate Lyapunov function

V (z) := 〈Pz , z〉H + M‖z‖3H

Along the strong solutions to (11), with Ã = A− BB?

d

dt
〈Pz , z〉H = 〈Pz , Ãz〉H + 〈PÃz , z〉H

+ 2〈PB(B?z − sat2(B?z), z〉H
+ 2〈PB(sat2(B?z)− sat2(B?z + d)), z〉H
≤−‖z‖2H+2‖B?z‖2‖P‖L(H)‖B?z − satL2(0,1)(B

?z)‖L2(0,1)
+ 2〈sat2(B?z)− sat2(B?z + d),B?Pz〉L2(0,1),
≤− ‖z‖2H + 2‖B?z‖L2(0,1)‖P‖L(H)‖B?z − sat2(B?z)‖L2(0,1)

+ 2k‖d‖L2(0,1)‖B?‖L(H,L2(0,1))‖P‖L(H)‖z‖H ,

using sat2 Lipchitz, Cauchy-Schwarz inequality and the fact that
B? is bounded.
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Moreover using ‖d‖L2(0,1)‖z‖H ≤ ε‖d‖2L2(0,1) + 1
ε‖z‖

2
H and

‖B?z − sat2(B?z)‖L2(0,1) ≤ 〈sat2(B?z),B?z〉L2(0,1), we get

d

dt
〈Pz , z〉H ≤−

(
1−
‖B?‖2L(H,L2(0,1))‖P‖

2
L(H)

ε1

)
‖z‖2H

+2‖B?‖L(H,L2(0,1))‖P‖L(H)‖z‖H〈sat2(B?z),B?z〉L2(0,1)
+k2ε1‖d‖2L2(0,1)

where ε1 is a positive value that will be selected later.

Thus

d

dt
W (z) ≤ good term + bad term + d2
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Secondly, using the dissipativity of the operator Asat,
〈sat2(B?z)− sat2(B?z + d),B?z〉L2(0,1) ≤ C0‖d‖L2(0,1), and

‖z‖H‖d‖L2(0,1) ≤ 1
ε2
‖z‖2H + ε2‖d‖2L2(0,1), one has

2M

3

d

dt
‖z‖3H =M‖z‖

(
〈Az , z〉H + 〈z ,Az〉H

)
− 2M‖z‖H〈Bsat2(B?z + d), z〉H
≤− 2M‖z‖H

(
〈sat2(B?z),B?z〉L2(0,1)

+ 〈sat2(B?z)− sat2(B?z + d),B?z〉L2(0,1)
)

≤− 2M‖z‖H〈sat2(B?z),B?z〉L2(0,1)
+ 2MC0‖z‖H‖d‖L2(0,1)
≤−2M‖z‖H〈sat2(B?z),B?z〉L2(0,1)

+
2MC0

ε2
‖z‖2H + 2MC0ε2‖d‖2L2(0,1),

where ε2 is a positive value that has to be selected. For an
appropriate choice of M, ε1 and ε2 we deduce the result. �
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3 – with localized saturation map

What happens with sat instead of sat2? What is the speed of
convergence of {

d
dt z = Az − Bsat(B?z),

z(0) = z0,
(13)
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Theorem

Hence, the origin of (13) is semi-globally exponentially stable in
D(A), that is for any positive r and any z0 in D(A) satisfying
‖z0‖D(A) ≤ r , there exist two positive constants µ := µ(r) and
K := K (r) such that

‖Wσ(t)z0‖H ≤ Ke−µt‖z0‖H , ∀t ≥ 0. (14)

Remarks • on Korteweg-de Vries equation: [Rosier, Zhang; 2006]
and [Marx, Cerpa, CP, Andrieu; 2017].
We may deduce a global asymptotic stability (but without any
estimation of the convergence speed).
• In our work the monotonicity is crucial and also only 1D
See [Martinez, Vancostenoble; 2000] for N ≤ 2. See also last part
of this presentation for N = 1.
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Sketch of the proof

Let Ṽ (z) be the Lyapunov function candidate defined by

z ∈ D(A) 7→ Ṽ (z) := 〈Pz , z〉H + M̃‖z‖2H ,

where M̃ > 0 will be selected later. As before, using the
dissipativity of the operator A− B?B, one has

d

dt
M̃‖z‖2H ≤ −2M̃〈B?z , sat(B?z)〉L2(0,1). (15)

and

d

dt
〈Pz , z〉H ≤ −‖z‖2H + 2〈B?Pz ,B?z − sat(B?z)〉L2(0,1).

The term 2〈B?Pz ,B?z − sat(B?z)〉L2(0,1) is ”controlled”
differently.
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Consider r > 0 and a strong solution for (13), whose initial
condition z0 ∈ D(A) is such that

‖z0‖D(A) ≤ r

First note that, from the dissipativity, it implies ‖z(t)‖D(A) ≤ r for
all t ≥ 0.

|〈B?Pz ,B?z − sat(B?z)〉L2(0,1)|
≤ ‖B?Pz‖L∞(0,1)‖B?z − sat(B?z)‖L1(0,1)
≤ C‖Pz‖D(A)‖B?z − sat(B?z)‖L1(0,1)
≤ C ′‖P‖L(D(A))‖z‖D(A)〈sat(B?z),B?z〉L2(0,1)

Therefore

dṼ
dt ≤ −‖z‖2H − 2(M̃ − C ′‖P‖L(D(A))‖z‖D(A))〈sat(B?z),B?z〉
≤ −‖z‖2H − 2(M̃ − C ′‖P‖L(D(A))r)〈sat(B?z),B?z〉
≤ −‖z‖2H

for a suitable M̃. The result follows. �
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4 – Case of a non-monotone damping

Consider again the controlled wave equation:
ztt = zxx + u, (t, x) ∈ R+ × [0, 1]

z(t, 0) = z(t, 1) = 0, t ∈ R+

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ [0, 1],

Nonlinear damping σ law given by the damping

u(t, x) = −
√

a(x)σ(
√

a(x)zt(t, x)) where ∀x ∈ ω, a0 < a(x) ≤ a∞, a0 > 0.

References

[Martinez; 99], [Martinez, Vancostenoble; 00]

Question

What about nonmonotone nonlinearities σ?
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Nonmonotone damping

Nonmonotone damping

A function σ is a nonmonotone damping if

1. it is locally Lipschitz

2. σ(0) = 0

3. for all s ∈ R, σ(s)s > 0

4. the function σ is differentiable at s = 0 with σ′(0) = C1,
where C1 is a positive constant.
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Nonmonotone damping

for example: σ(s) = sat
(
1
4s −

1
30 sin(10s)

)
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Regularity issues

Since the function σ is (possibly) nonmonotone, then the
LaSalle’s Invariance Principle does not apply !

Moreover, the classical functional setting

H = H1
0 (0, 1)× L2(0, 1),

is not sufficient to ensure a L∞ regularity for the state zt .

Solution (inspired by [Haraux; 2009])

Our solution consists in using the functional setting

Hp :=
(
W 1,p(0, 1) ∩ H1

0 (0, 1)
)
× Lp(0, 1),

where p ∈ [1,∞].
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Main results


ztt = zxx −

√
a(x)σ(

√
a(x)zt), (t, x) ∈ R+ × [0, 1]

z(t, 0) = z(t, 1) = 0, t ∈ R+

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ [0, 1].

(Sys)

Theorem [Chitour, Marx, CP; under submission] (well-posedness)

∀ initial condition (z0, z1) ∈ H∞, ∃! solution
(z , zt) ∈ L∞(R+;W 1,∞(0, 1))×W 1,∞(R+; L∞(0, 1)) to (Sys).
Moreover, one has

‖(z , zt)‖H∞(0,1) ≤ 2 max
(
‖z ′0‖L∞(0,1), ‖z1‖L∞(0,1)

)
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Well-posedness proof (1)

• Fixed-point theorem ⇒ existence and uniqueness in [0,T ].

• The estimate is proved thanks to the following result

Theorem [Haraux; 2009]

Let us consider initial condition in H∞. Let us introduce the
following functional

φ(z , zt) =

∫ 1

0
[F (z − zt) + F (z + zt)]dx ,

where F is any even and convex function. Then, the time
derivative of φ along the trajectories of (Sys) satisfies

d

dt
φ(z , zt) ≤ 0.

39/47 C. Prieur Toulouse, Sept. 2019



Well-posedness proof (2)

Due to the latter theorem, one has φ(z , zt) ≤ φ(z0, z1), for all
t ≥ 0. Then, the result follows by setting

F (s) := [Pos(|s| − 2 max(‖z ′0‖L∞(0,1), ‖z1‖L∞(0,1))],

where

Pos(s) :=

{
s if s > 0,

0 if s ≤ 0.

This implies that φ(z , zt) = 0 and then, for all t ≥ 0

‖(z , zt)‖H∞(0,1) ≤ 2 max
(
‖z ′0‖L∞(0,1), ‖z1‖L∞(0,1)

)
.

Question

What about the asymptotic stability ?
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Steps

Consider (Sys), with initial conditions in H∞. Thanks to this
regularity:

1. Prove the result in H2 = H1
0 (0, 1)× L2(0, 1)

2. Deduce the result in Hp by an interpolation theorem
(Riesz-Thaurin theorem), with

Hp =
(
W 1,p(0, 1) ∩ H1

0 (0, 1)
)
× Lp(0, 1)

Strategy

Transforming the nonlinear time-invariant system as a trajectory of
a linear time-variant system.
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A detour via linear time-variant systems

System (Sys) can be seen as a trajectory of a linear time-variant
system (LTV).

ztt = zxx − a(x)d(t, x)zt , (t, x) ∈ R+ × [0, 1],

z(t, 0) = z(t, 1) = 0, t ∈ R+,

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ [0, 1],

(LTV-wave)

where

d(t, x) =


σ(
√

a(x)zt)√
a(x)zt

,
√

a(x)zt 6= 0,

C1,
√

a(x)zt = 0,

where C1 = σ′(0).
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Abstract system

Let us recall that H2 = H1
0 (0, 1)× L2(0, 1) and let us introduce

U = L2(0, 1). Consider the abstract system
d

dt
y = Ay − d(t)BB?y := Ad(t)y ,

y(τ) = yτ , τ ≥ 0,
(Abstract)

with y =
[
z zt

]>
, A : D(A) ⊂ H2 → H2 defined as

A =

[
0 IH2

∂xx 0

]
, B =

[
0
√

a(x)IH2

]>
,

with D(A) = (H2(0, 1) ∩ H1
0 (0, 1))× H1

0 (0, 1).

Trajectories

(Sys) and (Abstract) share one trajectory, i.e. when τ = 0.
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An abstract result

Proposition (for convergence result)

Suppose that there exist d0, d1 > 0 such that

d0 ≤ d(t) ≤ d1.

Then, if {
d
dt y = Ay − d0BB

?y := Ad0y ,
y(0) = y0,

is exponentially stable, the trajectory of (Abstract) with τ = 0
converges to 0.
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Lyapunov proof of this proposition

Exponential stability ⇒ ∃ P̂ ∈ L(H2) and C > 0 such that

〈P̂y ,Ad0〉H2 + 〈P̂Ad0y , y〉H2 ≤ −C‖y‖
2
H2

Time derivative of the Lyapunov functional

V̂ (y) := 〈P̂y , y〉H2 + M̂‖y‖2H2

along the trajectories of (Abstract) with M̂ =
2(d1−d0)‖P̂‖L(H2)

d0‖B‖L(H2,U)
,

dV̂

dt
(y) ≤ −C‖y‖2H2

Then,

‖y‖2H2
≤
‖P̂‖L(H2) + M̂

M̂
exp

(
− C

‖P̂‖L(H2) + M̂
t

)
‖y0‖2H2

, ∀t ≥ 0
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Back to the proof of convergence result

Recall that

d(t, x) =


σ(
√
a(x)zt)√
a(x)zt

,
√

a(x)zt 6= 0,

C1,
√
a(x)zt = 0,

and that

‖(z , zt)‖H∞(0,1) ≤ 2 max
(
‖z ′0‖L∞(0,1), ‖z1‖L∞(0,1)

)
≤ 2r ,

then

d0 := min
ξ∈[−2√a∞r ,2

√
a∞r ]

σ(ξ)

ξ
≤ d(t, x)

≤ max
ξ∈[−2√a∞r ,2

√
a∞r ]

σ(ξ)

ξ
:= d1.

Then, one can prove easily that

‖(z , zt)‖H2 ≤ K (r)e−µ(r)t‖(z0, z1)‖H2

which is the result. �
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5 – Conclusion and further research lines

Results

1 Asymptotic stability in Hp for non-monotone damping

2 Semi-global exponential stability in H for monotone damping

3 Instead of wave equations, abstract operator theories could be
developped

Further research lines

1 What about quasilinear hyperbolic systems{
zt + Λ(z)zx = 0

z(t, 0) = Hz(t, 1) + Bu(t)?

See [Coron, Ervedoza, Ghoshal, Glass, Perrollaz; 17],
and the current work of M. Dus for BV solutions.

2 N-dimensional wave equations ?
N ≤ 2 in [Martinez, Vancostenoble; 2000]
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Bonus – Wave equation with a boundary control
g(t)

z(x , t)

x = 0 x = 1

1D wave equation with a boundary control.
Dynamics:

ztt(x , t) = zxx(x , t), ∀x ∈ (0, 1), t ≥ 0, (16)

Boundary conditions, ∀t ≥ 0,

z(0, t) = 0 ,
zx(1, t) = g(t) ,

(17)

and with the same initial condition, ∀x ∈ (0, 1),

z(x , 0) = z0(x) ,
zt(x , 0) = z1(x) .

(18)
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When closing the loop with a linear boundary control

Let us define the linear control by

g(t) = −bzt(1, t), x ∈ (0, 1), ∀t ≥ 0 (19)

and consider

E2 =
1

2

∫
(eµx(zt + zx)2dx +

∫
(e−µx(zt − zx)2dx ,

Formal computation. Along the solutions to (16), (17) and (19):

Ė2 = −µE2 + 1
2

(
eµ(1− b)2 − e−µ(1 + b)2

)
z2t (1, t)

Assuming b > 0 and letting µ > 0 such that
eµ(1− b)2 ≤ e−µ(1 + b)2, it holds Ė2 ≤ −µE2 and thus E2 is a
strict Lyapunov function and thus (16)-(19) is exponentially stable.

49/47 C. Prieur Toulouse, Sept. 2019



When closing the loop with a linear boundary control

Let us define the linear control by

g(t) = −bzt(1, t), x ∈ (0, 1), ∀t ≥ 0 (19)

and consider

E2 =
1

2

∫
(eµx(zt + zx)2dx +

∫
(e−µx(zt − zx)2dx ,

Formal computation. Along the solutions to (16), (17) and (19):

Ė2 = −µE2 + 1
2

(
eµ(1− b)2 − e−µ(1 + b)2

)
z2t (1, t)

Assuming b > 0 and letting µ > 0 such that
eµ(1− b)2 ≤ e−µ(1 + b)2, it holds Ė2 ≤ −µE2 and thus E2 is a
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When closing the loop with a saturating control

Let us consider now the nonlinear control
g(t) = −sat(bzt(1, t)), ∀t ≥ 0. The boundary conditions become:

z(0, t) = 0 , zx(1, t) = −sat(bzt(1, t)) . (20)

Theorem (stability with boundary control)

∀b > 0, for all (z0, z1) in {(u, v), (u, v) ∈
H2(0, 1)× H1

(0)(0, 1), ux(1) + sat(bv(1)) = 0, u(0) = 0}, the

solution to (16) with the boundary conditions (20) and the initial
condition (5) satisfies the following stability property, ∀t ≥ 0,

‖z(., t)‖H1
(0)

(0,1) + ‖zt(., t)‖L2(0,1) ≤ ‖z0‖H1
(0)

(0,1) + ‖z1‖L2(0,1) ,

together with the attractivity property

‖z(., t)‖H1
(0)

(0,1) + ‖zt(., t)‖L2(0,1) → 0, as t →∞ .
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To prove the well-posedness of the Cauchy problem we prove that
A2 defined by

A2

(
u
v

)
=

(
v
u′′

)
with the domain D(A2) = {(u, v), (u, v) ∈
H2(0, 1)× H1

(0)(0, 1), u′(1) + sat(bv(1)) = 0, u(0) = 0} is a
semigroup of contraction.

The global stability property comes directly from the dissipativity
of A2.

The global attractivity property comes from the following lemma:
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Lemma (semi-global exponential stability)

For all r > 0, there exists µ > 0 such that, for all initial condition
satisfying

‖z0′′‖2L2(0,1) + ‖z1‖2H1
(0)

(0,1) ≤ r2 , (21)

it holds
Ė2 ≤ −µE2

along the solutions to (16) with the boundary conditions (20).
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Sketch of the proof of this lemma

First note that by dissipativity of A2, it holds that

t 7→
∥∥∥∥A2

(
z(., t)
zt(., t)

)∥∥∥∥
H

is a non-increasing function. Thus, for all t ≥ 0,

|zt(1, t)| ≤
∥∥∥∥A2

(
z(., 0)
zt(., 0)

)∥∥∥∥
H

.

Now for all initial conditions satisfying (21), there exists c 6= b
such that, for all t ≥ 0,

(b − c)|zt(1, t)| ≤ 1

and thus the following local sector condition holds:
sat(bσ)

b
|b−c|

bσ Letting σ = zt(1, t), it holds
(sat(bσ)− bσ)(sat(bσ)− (b − c)σ) ≤ 0
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We come back to the Lyapunov function candidate E2. Given
b > 0, using the previous inequality, we compute

Ė2 = −µE2 + eµ(σ − sat(bσ))2 − e−µ(σ + sat(bσ))2

≤ −µE2 +
(

σ
sat(bσ)

)> ( eµ − e−µ − b2(b − c) −eµ − e−µ + b + b(b − c)

−eµ − e−µ + b + b(b − c) −1 + eµ − e−µ

)
×
(

σ
sat(bσ)

)
≤ −µE2

with a suitable choice of constant values µ and c.
The semi-global exponential stability follows. �

Back to the wave equation with in-domain control
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