Wave equation and nonlinear damping controls

Christophe PRIEUR
CNRS, Gipsa-lab, Grenoble, France

Control and stabilization issues for PDE dedicated to Jean-Pierre Raymond

Figure 3.5. The frequency distribution of the normal vibration modes of a ski. The ski is clamped at the center to a shaker and driven. An output accelerometer located on the afterbody records the vibration response shown. [Reprinted with permission from R. L. Pizialli and C. D. Mote, Jr., "The Snow Ski as a Dynamic System," J. Dynamic Syst. Meas. Control, Trans. ASME 94, 134 (1972).|

Page 63: Natural frequency with "good and bad vibrations"
[David A. Lind et Scott P. Sanders, The Physics of Skiing: Skiing at the Triple Point, 2nd edition; 2013]

Use passively controls
 [L. Rothemann, H. Schretter, Active vibration damping of the alpine ski; 2010]

One way to kill bad vibrations?

Control your skis!
How to do it actively?
Need to control a PDE, with
finite energy,
that is with saturating controls.
As Jean-Pierre?

As Jean-Pierre would do!

One way to kill bad vibrations?

Figure 2.1. This skier heads down the hill, his skis lubricated by a film of water that forms under his skis. In his thoughts he mulls over a mathematical formula that we will discuss later in Chapter 8 on snow friction processes. (Colbeck, 1992. Drawn by Marilyn Aber, CRREL.)

Control your skis!

Use passively controls [L. Rothemann, H. Schretter, Active vibration damping of the alpine ski; 2010]

How to do it actively?
Need to control a PDE, with
finite energy,
that is with saturating controls.

As Jean-Pierre?

One way to kill bad vibrations?

Figure 2.1. This skier heads down the hill, his skis lubricated by a film of water that forms under his skis. In his thoughts he mulls over a mathematical formula that we will discuss later in Chapter 8 on snow friction processes. (Colbeck, 1992. Drawn by Marilyn Aber, CRREL.)

Use passively controls [L. Rothemann, H. Schretter, Active vibration damping of the alpine ski; 2010]

How to do it actively? Need to control a PDE, with finite energy, that is with saturating controls.

As Jean-Pierre would do!

Given a PDE, there exists now a large variety on methods to design linear controllers. It is well known that saturation can reduce the performance or even destabilize the system, even for finite-dimensional systems.
More precisely, even if

$$
\begin{equation*}
\dot{z}=A z+B K z \tag{1}
\end{equation*}
$$

is asymp. stable, it may hold that

$$
\begin{equation*}
\dot{z}=A z+\operatorname{sat}(B K z) \tag{2}
\end{equation*}
$$

is not globally asymptotically stable.
It may exist new equilibrium, new limit cycles...
See e.g. [Tarbouriech, Garcia, Gomes da Silva Jr., Queinnec; 2011]

Given a PDE, there exists now a large variety on methods to design linear controllers. It is well known that saturation can reduce the performance or even destabilize the system, even for finite-dimensional systems.
More precisely, even if

$$
\begin{equation*}
\dot{z}=A z+B K z \tag{1}
\end{equation*}
$$

is asymp. stable, it may hold that

$$
\begin{equation*}
\dot{z}=A z+\operatorname{sat}(B K z) \tag{2}
\end{equation*}
$$

is not globally asymptotically stable.
It may exist new equilibrium, new limit cycles...
See e.g. [Tarbouriech, Garcia, Gomes da Silva Jr., Queinnec; 2011]

Stability issues : a finite-dimensional example

Saturating a stabilizing feedback law can lead to instabilities.
An illustrative example

$$
\frac{d z}{d t}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] z+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] u
$$

Open-loop eigenvalues: $\lambda_{1}=1, \lambda_{2}=-1$. Setting $u=K z$ with $K=\left[\begin{array}{ll}13 & 7\end{array}\right]$, the origin is globally asymptotically stable.

Considering $u=\operatorname{sat}(K z)$ with saturation level $u_{s}=5$, we get
(1) $z_{0}=[-2-3]^{\top}$: the trajectory converges to $z^{\star}=[-50]^{\top}$;
(2) $z_{0}=[-3-3]^{\top}$: the trajectory diverges.

Stability issues: a finite-dimensional example

Figure: $\left(^{*}\right)$: initial conditions, (o): equilibrium points

Goal of this talk:
What happens if in (2), instead of matrices $A, B \ldots$, we have operators? More precisely, what happens if A generates a semigroup and B is a bounded control operator? An example of such a nonlinear PDE given by (2):
Wave equation with saturating in-domain control
Two objectives

- Well-posedness
- Stability
of the wave equation in presence of a disturbed saturating control with a Lyapunov method.
[Haraux; 18], [Martinez; 99], [Martinez and Vancostenoble; 00], [Alabau-Boussouira; 12]

Outline

1 Well-posedness and stability of linear wave equation with a saturated in-domain control

Lyapunov method, LaSalle invariance principle 2 Design of a strict Lyapunov function for L^{2} saturation Robustness result

3 With localized $\left(L^{\infty}\right)$ saturation
strict Lyapunov method, robustness result
4 With non-monotone damping
comparison with a linear time-varying equation
5 Conclusion

Outline

1 Well-posedness and stability of linear wave equation with a saturated in-domain control

Lyapunov method, LaSalle invariance principle
2 Design of a strict Lyapunov function for L^{2} saturation
Robustness result
3 With localized $\left(L^{\infty}\right)$ saturation
strict Lyapunov method, robustness result
4 With non-monotone damping
comparison with a linear time-varying equation
5 Conclusion

Outline

1 Well-posedness and stability of linear wave equation with a saturated in-domain control

Lyapunov method, LaSalle invariance principle
2 Design of a strict Lyapunov function for L^{2} saturation
Robustness result
3 With localized $\left(L^{\infty}\right)$ saturation
strict Lyapunov method, robustness result
4 With non-monotone damping comparison with a linear time-varying equation
5 Conclusion

1 - Wave equation with an in-domain control

1D wave equation with in-domain control.
Dynamics of the vibration:

$$
\begin{equation*}
z_{t t}(x, t)=z_{x x}(x, t)+f(x, t), \forall x \in(0,1), t \geq 0 \tag{3}
\end{equation*}
$$

Boundary conditions, $\forall t \geq 0$,

$$
\begin{align*}
& z(0, t)=0 \tag{4}\\
& z(1, t)=0,
\end{align*}
$$

and with the following initial condition, $\forall x \in(0,1)$,

$$
\begin{align*}
z(x, 0) & =z^{0}(x) \\
z_{t}(x, 0) & =z^{1}(x) \tag{5}
\end{align*}
$$

where z^{0} and z^{1} stand respectively for the initial deflection and the initial deflection speed.

When closing the loop with a linear control

Let us define the linear control by

$$
\begin{equation*}
f(x, t)=-a z_{t}(x, t), x \in(0,1), \forall t \geq 0 \tag{6}
\end{equation*}
$$

and consider the energy

$$
E=\frac{1}{2} \int\left(z_{x}^{2}+z_{t}^{2}\right) d x
$$

Formal computation. Along the solutions to (3), (4) and (6):

$$
\begin{aligned}
\dot{E} & =\int_{0}^{1}\left(z_{x} z_{x t}-a z_{t}^{2}+z_{t} z_{x x}\right) d x \\
& =-\int_{0}^{1} a z_{t}^{2} d x+\left[z_{t} z_{x}\right]_{x=0}^{x=1} \\
& =-\int_{0}^{1} a z_{t}^{2} d x
\end{aligned}
$$

Thus, it a $>0, E$ is a (non strict) Lyapunov function.

Using standard technics (Lumer-Philipps thereom (for the well-posedness) and Huang-Prüss theorem (for the exp. stability)):

Proposition

$\forall a>0, \forall\left(z^{0}, z^{1}\right)$ in $H:=H_{0}^{1}(0,1) \times L^{2}(0,1)$,
$\exists!$ solution $\left(z, z_{t}\right):[0, \infty) \rightarrow H$ to (3)-(6).

In the previous proposition:

- stability
- attractivity of the equilibrium
- with an exponential speed

Using standard technics (Lumer-Philipps thereom (for the well-posedness) and Huang-Prüss theorem (for the exp. stability)):

Proposition

$\forall a>0, \forall\left(z^{0}, z^{1}\right)$ in $H:=H_{0}^{1}(0,1) \times L^{2}(0,1)$,
$\exists!$ solution $\left(z, z_{t}\right):[0, \infty) \rightarrow H$ to (3)-(6). Moreover, $\exists C, \mu>0$, such that, for any initial condition H, it holds, $\forall t \geq 0$,

$$
\|z\|_{H_{0}^{1}(0,1)}+\left\|z_{t}\right\|_{L^{2}(0,1)} \leq C e^{-\mu t}\left(\left\|z^{0}\right\|_{H_{0}^{1}(0,1)}+\left\|z^{1}\right\|_{L^{2}(0,1)}\right) .
$$

In the previous proposition:

- stability
- attractivity of the equilibrium
- with an exponential speed

Using standard technics (Lumer-Philipps thereom (for the well-posedness) and Huang-Prüss theorem (for the exp. stability)):

Proposition

$\forall a>0, \forall\left(z^{0}, z^{1}\right)$ in $H:=H_{0}^{1}(0,1) \times L^{2}(0,1)$,
$\exists!$ solution $\left(z, z_{t}\right):[0, \infty) \rightarrow H$ to (3)-(6). Moreover, $\exists C, \mu>0$, such that, for any initial condition H, it holds, $\forall t \geq 0$,

$$
\|z\|_{H_{0}^{1}(0,1)}+\left\|z_{t}\right\|_{L^{2}(0,1)} \leq C e^{-\mu t}\left(\left\|z^{0}\right\|_{H_{0}^{1}(0,1)}+\left\|z^{1}\right\|_{L^{2}(0,1)}\right) .
$$

In the previous proposition:

- stability
- attractivity of the equilibrium
- with an exponential speed

When closing the loop with a saturating control

Let us consider now the nonlinear control

$$
\begin{equation*}
f(x, t)=-\operatorname{sat}\left(a z_{t}(x, t)\right), x \in(0,1), \forall t \geq 0 \tag{7}
\end{equation*}
$$

where sat is the localized saturated map:

$$
\operatorname{sat}(\sigma)= \begin{cases}\sigma & \text { if }|\sigma|<1 \\ \operatorname{sign}(\sigma) & \text { else }\end{cases}
$$

Equation (3) in closed loop with the control (7) becomes

$$
\begin{equation*}
z_{t t}=z_{x x}-\operatorname{sat}\left(a z_{t}\right) \tag{8}
\end{equation*}
$$

A formal computation gives, along the solutions to (8) and (4),

$$
\dot{E}=-\int_{0}^{1} z_{t} \operatorname{sat}\left(a z_{t}\right) d x
$$

which asks to handle the nonlinearity $z_{t} \operatorname{sat}\left(a z_{t}\right)$.

Remark: Choice of the saturation map

[Slemrod; 89] and [Lasiecka, Seidman; 03] deal with L^{2} saturation: Given $\sigma:[0,1] \rightarrow \mathbb{R}$, $\operatorname{sat}_{2}(\sigma)$ is the function defined by $\operatorname{sat}_{2}(\sigma)(x)= \begin{cases}\sigma(x) & \text { if }\|\sigma\|_{L^{2}(0,1)}<1 \\ \frac{\sigma(x)}{\|\sigma\|_{L^{2}(0,1)}} & \text { else }\end{cases}$

Here we consider localized saturation which is more physically relevant:
$\operatorname{sat}(\sigma(x))= \begin{cases}\sigma(x) & \text { if }|\sigma(x)|<1 \\ \operatorname{sign}(\sigma(x)) & \text { else }\end{cases}$

Difference between both saturations maps

$$
\begin{aligned}
& \operatorname{sat}_{2}(\sigma)(x)= \\
& \begin{cases}\sigma(x) & \text { if }\|\sigma\|_{L^{2}(0,1)}<1 \\
\frac{\sigma(x)}{\|\sigma\|_{L^{2}(0,1)}} & \text { else }\end{cases} \\
& \text { sat }(\sigma(x))= \\
& \begin{cases}\sigma(x) & \text { if }|\sigma(x)|<1 \\
\operatorname{sign}(\sigma(x)) & \text { else }\end{cases}
\end{aligned}
$$

with $\sigma=2 \cos$

Well-posedness of this nonlinear PDE

Theorem 1 [CP, Tarbouriech, Gomes da Silva Jr; 2016]
$\forall a \geq 0$, for all $\left(z^{0}, z^{1}\right)$ in $\left(H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1)$, there exists a unique (strong) solution z : $[0, \infty) \rightarrow H^{2}(0,1) \cap H_{0}^{1}(0,1)$ to (8) with the boundary conditions (4) and the initial condition (5).

Consider

$$
A_{1}\binom{u}{v}=\binom{v}{u_{x x}-\operatorname{sat}(a v)}
$$

with the domain $D\left(A_{1}\right)=\left(H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1)$.
Let us use a generalization of Lumer-Phillips theorem which is the so-called Crandall-Liggett theorem, as given in [Barbu; 1976]. See also [Brezis; 1973] and [Miyadera; 1992].
Again two conditions
(1) A_{1} is dissipative, that is

$$
\Re\left(\left\langle A_{1}\binom{u}{v}-A_{1}\binom{\tilde{u}}{\tilde{v}},\binom{u}{v}-\binom{\tilde{u}}{\tilde{v}}\right\rangle\right)_{H} \leq 0
$$

(2) For all $\lambda>0, D\left(A_{1}\right) \subset \operatorname{Ran}\left(I-\lambda A_{1}\right)$

First item: Easy step!
Instead of proving
$\Re\left(\left\langle A_{1}\binom{u}{v}-A_{1}\binom{\tilde{u}}{\tilde{v}},\binom{u}{v}-\binom{\tilde{u}}{\tilde{v}}\right\rangle\right)_{H} \leq 0$, let us
check, for all $\binom{u}{v} \in H \quad\left(=H_{0}^{1}(0,1) \times L^{2}(0,1)\right)$:

$$
\Re\left(\left\langle A_{1}\binom{u}{v},\binom{u}{v}\right\rangle\right)_{H} \leq 0
$$

To do that, using the definition of A_{1}, and of the scalar product in $H_{0}^{1}(0,1) \times L^{2}(0,1)$, it is equal to:

$$
\begin{gathered}
\int_{0}^{1} v_{x}(x) \overline{u_{x}(x)} d x+\int_{0}^{1}\left(u_{x x}(x)-\operatorname{sat}(\operatorname{av(x)}) \overline{v(x)} d x,\right. \\
=\int_{0}^{1} v_{x}(x) \overline{u_{x}(x)} d x+\int_{0}^{1} u_{x x}(x) \overline{v(x)} d x-\int_{0}^{1} \operatorname{sat}(\operatorname{av(x)} \overline{v(x)} d x \\
=\left[u_{x}(x) \overline{v(x)}\right]_{x=0}^{x=1}-\int_{0}^{1} \operatorname{sat}(\operatorname{av(x)}) \overline{v(x)} d x \leq 0
\end{gathered}
$$

due to the boundary and since $a \geq 0$.

Second item asks to deal with a nonlinear ODE.
Let $\binom{u}{v} \in H$ we have to find $\binom{\tilde{u}}{\tilde{v}} \in D\left(A_{1}\right)$ such that

$$
\left(I-\lambda A_{1}\right)\binom{\tilde{u}}{\tilde{v}}=\binom{u}{v}
$$

that is

$$
\left\{\begin{array}{c}
\tilde{u}-\lambda \tilde{v}=u \\
\tilde{v}-\lambda\left(\tilde{u}_{x x}-\operatorname{sat}(a \tilde{v})\right)=v,
\end{array}\right.
$$

In particular, we have to find \tilde{u} such that

$$
\begin{aligned}
& \tilde{u}_{x x}-\frac{1}{\lambda^{2}} \tilde{u}-\operatorname{sat}\left(\frac{a}{\lambda}(\tilde{u}-u)\right)=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u \\
& \tilde{u}(0)=\tilde{u}(1)=0
\end{aligned}
$$

holds.
Nonhomogeneous nonlinear ODE with two boundary conditions

Lemma

If a is nonnegative and λ is positive, then there exists \tilde{u} solution to

$$
\begin{gather*}
\tilde{u}_{x x}-\frac{1}{\lambda^{2}} \tilde{u}-\operatorname{sat}\left(\frac{a}{\lambda}(\tilde{u}-u)\right)=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u \tag{9}\\
\tilde{u}(0)=\tilde{u}(1)=0
\end{gather*}
$$

To prove this lemma, let us introduce the following map

$$
\begin{aligned}
\mathcal{T}: \quad L^{2}(0,1) & \rightarrow L^{2}(0,1) \\
y & \mapsto z=\mathcal{T}(y)
\end{aligned}
$$

where $z=\mathcal{T}(y)$ is the unique solution to

$$
\begin{gathered}
z_{x x}-\frac{1}{\lambda^{2}} z=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u+\operatorname{sat}\left(\frac{a}{\lambda}(y-u)\right), \\
z(0)=z(1)=0
\end{gathered}
$$

Prove that \mathcal{T} is well defined and apply the Schauder fixed-point theorem (see e.g., [Coron; 2007]), to deduce that there exists y such that $\mathcal{T}(y)=y$

Lemma

If a is nonnegative and λ is positive, then there exists \tilde{u} solution to

$$
\begin{gather*}
\tilde{u}_{x x}-\frac{1}{\lambda^{2}} \tilde{u}-\operatorname{sat}\left(\frac{a}{\lambda}(\tilde{u}-u)\right)=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u \tag{9}\\
\tilde{u}(0)=\tilde{u}(1)=0
\end{gather*}
$$

To prove this lemma, let us introduce the following map

$$
\begin{aligned}
\mathcal{T}: \quad L^{2}(0,1) & \rightarrow L^{2}(0,1) \\
y & \mapsto z=\mathcal{T}(y)
\end{aligned}
$$

where $z=\mathcal{T}(y)$ is the unique solution to

$$
\begin{gathered}
z_{x x}-\frac{1}{\lambda^{2}} z=-\frac{1}{\lambda} v-\frac{1}{\lambda^{2}} u+\operatorname{sat}\left(\frac{a}{\lambda}(y-u)\right), \\
z(0)=z(1)=0
\end{gathered}
$$

Prove that \mathcal{T} is well defined and apply the Schauder fixed-point theorem (see e.g., [Coron; 2007]), to deduce that there exists y such that $\mathcal{T}(y)=y$

$$
\tilde{u}=y \text { solves }(9)
$$

Global asymptotic stability of this nonlinear PDE

Theorem 2

$\forall a>0$, for all $\left(z^{0}, z^{1}\right)$ in $\left(H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1)$, the solution to (8) with the boundary conditions (4) and the initial condition (5) satisfies the following stability property, $\forall t \geq 0$,

$$
\|z(., t)\|_{H_{0}^{1}(0,1)}+\left\|z_{t}(., t)\right\|_{L^{2}(0,1)} \leq\left\|z^{0}\right\|_{H_{0}^{1}(0,1)}+\left\|z^{1}\right\|_{L^{2}(0,1)}
$$

together with the attractivity property

$$
\|z(., t)\|_{H_{0}^{1}(0,1)}+\left\|z_{t}(., t)\right\|_{L^{2}(0,1)} \rightarrow 0, \text { as } t \rightarrow \infty
$$

Due to Theorem 1, the formal computation

$$
\dot{E}=-\int_{0}^{1} z_{t} \operatorname{sat}\left(a z_{t}\right) d x
$$

makes sense. This is only a weak Lyapunov function $\dot{E} \leq 0$
(the state is $\left(z, z_{t}\right)$, and there is no $\left.-z^{2}\right)$.
To be able to apply LaSalle's Invariance Principle, we have to check that the trajectories are precompact (see e.g. [Dafermos, Slemrod; 1973]).
It comes from:

Lemma

The canonical embedding from $D\left(A_{1}\right)$, equipped with the graph norm, into $H_{0}^{1}(0,1) \times L^{2}(0,1)$ is compact.

Sketch of the proof of

The canonical embedding from $D\left(A_{1}\right)$, equipped with the graph norm, into $H_{0}^{1}(0,1) \times L^{2}(0,1)$ is compact.

Consider a sequence $\binom{u_{n}}{v_{n}}_{n \in \mathbb{N}}$ in $D\left(A_{1}\right)$, which is bounded with the graph norm, that is $\exists M>0, \forall n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|\binom{u_{n}}{v_{n}}\right\|_{D\left(A_{1}\right)}^{2}:= & \left\|\binom{u_{n}}{v_{n}}\right\|^{2}+\left\|A_{1}\binom{u_{n}}{v_{n}}\right\|^{2}, \\
= & \int_{0}^{1}\left(\left|u_{n}^{\prime}\right|^{2}+\left|v_{n}\right|^{2}+\left|v_{n}^{\prime}\right|^{2}\right. \\
& \left.+\left|u_{n}^{\prime \prime}-\operatorname{asat}\left(v_{n}\right)\right|^{2}\right) d x<M
\end{aligned}
$$

From that, we deduce that $\int_{0}^{1}\left(\left|v_{n}\right|^{2}+\left|v_{n}^{\prime}\right|^{2}\right) d x$ and $\int_{0}^{1}\left(\left|u_{n}^{\prime}\right|^{2}+\left|u_{n}^{\prime \prime}\right|^{2}\right) d x$ are bounded.
Thus there exists a subsequence which converges in $H_{0}^{1}(0,1) \times L^{2}(0,1)$.

Using the dissipativity of A_{1}, and previous lemma the trajectory $\binom{z(., t)}{z_{t}(., t)}$ is precompact in $H_{0}^{1}(0,1) \times L^{2}(0,1)$.
Moreover the ω-limit set $\omega\left[\binom{z(., 0)}{z_{t}(., 0)}\right] \subset D\left(A_{1}\right)$, is not empty and invariant with respect to the nonlinear semigroup $T(t)$ (see [Slemrod; 1989]).
We now use LaSalle's invariance principle to show that $\omega\left[\binom{z(., 0)}{z_{t}(., 0)}\right]=\{0\}$.
Therefore the convergence property holds.

Remark: Boundary control

1D wave equation with a boundary control.
Dynamics: $\forall x \in(0,1), t \geq 0$,

$$
z_{t t}(x, t)=z_{x x}(x, t)
$$

Boundary conditions: $\forall t \geq 0$,

$$
\begin{aligned}
z(0, t) & =0 \\
z_{x}(1, t) & =-\operatorname{sat}\left(b z_{t}(1, t)\right)
\end{aligned}
$$

In the same work, stability proof using the sector condition + strict Lyapunov function.

2 - Strict Lyapunov function

For the wave equation+ saturated in-domain control, a non-strict Lyapunov function has been computed.

- Thus a priori no robustness margin. What happens in presence of noise?
- For linear PDE, we have exponential convergence (see Proposition on Slide 10).
Do we have exp. stability for the nonlinear PDE?
Rewrite the wave equation as a abstract control system:

$$
\left\{\begin{array}{l}
\frac{d z}{d t}=A z+B u \\
z(0)=z_{0}
\end{array}\right.
$$

There exists a self-adjoint and pos. def. $P \in \mathcal{L}(H)$ s.t.

$$
\begin{equation*}
\left\langle\left(A-B B^{\star}\right) z, P z,\right\rangle_{H}+\left\langle P z,\left(A-B B^{\star}\right) z\right\rangle_{H} \leq-\|z\|_{H}^{2}, \quad \forall z \in D(A) \tag{10}
\end{equation*}
$$

In presence of saturated input and disturbances

Consider the L^{2} saturated case

$$
\left\{\begin{array}{l}
\frac{d z}{d t}=A z-B \operatorname{sat}_{2}\left(B^{\star} z\right) \tag{11}\\
z(0)=z_{0}
\end{array}\right.
$$

In presence of saturated input and disturbances

Consider the L^{2} saturated case + disturbance

$$
\left\{\begin{array}{l}
\frac{d z}{d t}=A z-B \operatorname{sat}_{2}\left(B^{\star} z+\underline{d}\right) \tag{11}\\
z(0)=z_{0}
\end{array}\right.
$$

where $d:(0, \infty) \rightarrow L^{2}(0,1)$ is a disturbance.

In presence of saturated input and disturbances

Consider the L^{2} saturated case + disturbance

$$
\left\{\begin{array}{l}
\frac{d z}{d t}=A z-B \operatorname{sat}_{2}\left(B^{\star} z+\underline{d}\right) \tag{11}\\
z(0)=z_{0}
\end{array}\right.
$$

where $d:(0, \infty) \rightarrow L^{2}(0,1)$ is a disturbance.
Recall the L^{2} saturation: Given $u:[0,1] \rightarrow \mathbb{R}$, $\operatorname{sat}_{2}(\sigma)$ is the

In presence of saturated input and disturbances

Consider the L^{2} saturated case + disturbance

$$
\left\{\begin{array}{l}
\frac{d z}{d t}=A z-B \operatorname{sat}_{2}\left(B^{\star} z+\underline{d}\right) \tag{11}\\
z(0)=z_{0}
\end{array}\right.
$$

where $d:(0, \infty) \rightarrow L^{2}(0,1)$ is a disturbance.
Recall the L^{2} saturation: Given $u:[0,1] \rightarrow \mathbb{R}, \operatorname{sat}_{2}(\sigma)$ is the
function defined by $\operatorname{sat}_{2}(\sigma)= \begin{cases}\sigma & \text { if } \| \sigma \\ \|\sigma\|_{L^{2}(0,1)} & \text { else }\end{cases}$
What can be said about the exp. stability when $d=0$ and about the robustness in presence of d ?

Input-to-State Stability (ISS) definition

A positive definite function $V: H \rightarrow \mathbb{R}_{\geq 0}$ is said to be an ISS-Lyapunov function with respect to \bar{d} if \exists two class \mathcal{K}_{∞} functions α and ρ such that, for any solution to (11)

$$
\frac{d}{d t} V(z) \leq-\alpha\left(\|z\|_{H}\right)+\rho\left(\|d\|_{L^{2}(0,1)}\right)
$$

Remark: Of course ISS Lyapunov function $+\exists$ two functions $\underline{\alpha}$ and $\bar{\alpha}$ of class ${ }^{1} \mathcal{K}$ such that

$$
\underline{\alpha}\left(\|z\|_{H}\right) \leq V(z) \leq \bar{\alpha}\left(\|z\|_{H}\right), \forall z \in H
$$

\Rightarrow the origin of (11) with $d=0$ is globally asymptotically stable.

[^0]
Input-to-state stability result

Theorem 3 [Marx, Chitour, CP; to appear]

Suppose that Assumption 1 holds and let $P \in \mathcal{L}(H)$ be a self-adjoint and positive operator satisfying (10). Then, there exists M such that

$$
\begin{equation*}
V(z):=\langle P z, z\rangle_{H}+M\|z\|_{H}^{3} \tag{12}
\end{equation*}
$$

is an ISS-Lyapunov function for (11).

The proof follows the finite-dimensional case considered in [Liu, Chitour, and Sontag; 1996].

Sketch of the proof

Let us consider the following candidate Lyapunov function

$$
V(z):=\langle P z, z\rangle_{H}+M\|z\|_{H}^{3}
$$

Along the strong solutions to (11), with $\tilde{A}=A-B B^{\star}$

$$
\begin{aligned}
\frac{d}{d t}\langle P z, z\rangle_{H}= & \langle P z, A z\rangle_{H}+\langle P A z, z\rangle_{H} \\
& +2\left\langle P B\left(\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right)\right), z\right\rangle_{H}
\end{aligned}
$$

Sketch of the proof

Let us consider the following candidate Lyapunov function

$$
V(z):=\langle P z, z\rangle_{H}+M\|z\|_{H}^{3}
$$

Along the strong solutions to (11), with $\tilde{A}=A-B B^{\star}$

$$
\begin{aligned}
\frac{d}{d t}\langle P z, z\rangle_{H}= & \langle P z, \tilde{A} z\rangle_{H}+\langle P \tilde{A} z, z\rangle_{H} \\
& +2\left\langle P B\left(B^{\star} z-\operatorname{sat}_{2}\left(B^{\star} z\right), z\right\rangle_{H}\right. \\
& +2\left\langle P B\left(\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right)\right), z\right\rangle_{H}
\end{aligned}
$$

Sketch of the proof

Let us consider the following candidate Lyapunov function

$$
V(z):=\langle P z, z\rangle_{H}+M\|z\|_{H}^{3}
$$

Along the strong solutions to (11), with $\tilde{A}=A-B B^{\star}$

$$
\begin{aligned}
\frac{d}{d t}\langle P z, z\rangle_{H}= & \langle P z, \tilde{A} z\rangle_{H}+\langle P \tilde{A} z, z\rangle_{H} \\
& +2\left\langle P B\left(B^{\star} z-\operatorname{sat} u\left(B^{\star} z\right), z\right\rangle_{H}\right. \\
& +2\left\langle P B\left(\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right)\right), z\right\rangle_{H} \\
\leq & -\|z\|_{H}^{2}+2\left\|B^{\star} z\right\|_{L^{2}(0,1)}\|P\|_{L^{(H}(H)}\left\|B^{\star} z-\operatorname{sat}_{2}\left(B^{\star} z\right)\right\|_{L^{2}(0,1)} \\
& +2\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} P z\right\rangle_{L^{2}(0,1)}
\end{aligned}
$$

Sketch of the proof

Let us consider the following candidate Lyapunov function

$$
V(z):=\langle P z, z\rangle_{H}+M\|z\|_{H}^{3}
$$

Along the strong solutions to (11), with $\tilde{A}=A-B B^{\star}$

$$
\begin{aligned}
\frac{d}{d t}\langle P z, z\rangle_{H}= & \langle P z, \tilde{A} z\rangle_{H}+\langle P \tilde{A} z, z\rangle_{H} \\
& +2\left\langle P B\left(B^{\star} z-\operatorname{sat}_{2}\left(B^{\star} z\right), z\right\rangle_{H}\right. \\
& +2\left\langle P B\left(\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right)\right), z\right\rangle_{H} \\
\leq & -\|z\|_{H}^{2}+2\left\|B^{\star} z\right\|_{2}\|P\|_{\mathcal{L}(H)}\left\|B^{\star} z-\operatorname{sat}_{L^{2}(0,1)}\left(B^{\star} z\right)\right\|_{L^{2}(0,1)} \\
& +2\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} P z\right\rangle_{L^{2}(0,1)}, \\
\leq & -\|z\|_{H}^{2}+2\left\|B^{\star} z\right\|_{L^{2}(0,1)}\|P\|_{\mathcal{L}(H)}\left\|B^{\star} z-\operatorname{sat}_{2}\left(B^{\star} z\right)\right\|_{L^{2}(0,1)} \\
& +2 k\|d\|_{L^{2}(0,1)}\left\|B^{\star}\right\|_{\mathcal{L}\left(H, L^{2}(0,1)\right)}\|P\|_{\mathcal{L}(H)}\|z\|_{H},
\end{aligned}
$$

using sat ${ }_{2}$ Lipchitz, Cauchy-Schwarz inequality and the fact that B^{\star} is bounded.

Moreover using $\|d\|_{L^{2}(0,1)}\|z\|_{H} \leq \varepsilon\|d\|_{L^{2}(0,1)}^{2}+\frac{1}{\varepsilon}\|z\|_{H}^{2}$ and $\left\|B^{\star} z-\operatorname{sat}_{2}\left(B^{\star} z\right)\right\|_{L^{2}(0,1)} \leq\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)}$, we get

$$
\begin{aligned}
\frac{d}{d t}\langle P z, z\rangle_{H} \leq & -\left(1-\frac{\left\|B^{\star}\right\|_{\mathcal{L}\left(H, L^{2}(0,1)\right)}^{2}\|P\|_{\mathcal{L}(H)}^{2}}{\varepsilon_{1}}\right)\|z\|_{H}^{2} \\
& +2\left\|B^{\star}\right\|_{\mathcal{L}\left(H, L^{2}(0,1)\right)}\|P\|_{\mathcal{L}(H)}\|z\|_{H}\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)} \\
& +k^{2} \varepsilon_{1}\|d\|_{L^{2}(0,1)}^{2}
\end{aligned}
$$

where ε_{1} is a positive value that will be selected later.
Thus

$$
\frac{d}{d t} W(z) \leq \text { good term }+ \text { bad term }+d^{2}
$$

Secondly, using the dissipativity of the operator $A_{\text {sat }}$, $\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{L^{2}(0,1)} \leq C_{0}\|d\|_{L^{2}(0,1)}$, and $\|z\|_{H}\|d\|_{L^{2}(0,1)} \leq \frac{1}{\varepsilon_{2}}\|z\|_{H}^{2}+\varepsilon_{2}\|d\|_{L^{2}(0,1)}^{2}$, one has

$$
\begin{aligned}
\frac{2 M}{3} \frac{d}{d t}\|z\|_{H}^{3}= & M\|z\|\left(\langle A z, z\rangle_{H}+\langle z, A z\rangle_{H}\right) \\
& -2 M\|z\|_{H}\left\langle B \operatorname{sat}_{2}\left(B^{\star} z+d\right), z\right\rangle_{H}
\end{aligned}
$$

Secondly, using the dissipativity of the operator $A_{\text {sat }}$, $\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{L^{2}(0,1)} \leq C_{0}\|d\|_{L^{2}(0,1)}$, and $\|z\|_{H}\|d\|_{L^{2}(0,1)} \leq \frac{1}{\varepsilon_{2}}\|z\|_{H}^{2}+\varepsilon_{2}\|d\|_{L^{2}(0,1)}^{2}$, one has

$$
\begin{aligned}
\frac{2 M}{3} \frac{d}{d t}\|z\|_{H}^{3}= & M\|z\|\left(\langle A z, z\rangle_{H}+\langle z, A z\rangle_{H}\right) \\
& -2 M\|z\|_{H}\left\langle B \operatorname{sat}_{2}\left(B^{\star} z+d\right), z\right\rangle_{H} \\
\leq & -2 M\|z\|_{H}\left(\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)}\right. \\
& \left.+\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{L^{2}(0,1)}\right)
\end{aligned}
$$

where ε_{2} is a positive value that has to be selected. For an

Secondly, using the dissipativity of the operator $A_{\text {sat }}$, $\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{L^{2}(0,1)} \leq C_{0}\|d\|_{L^{2}(0,1)}$, and $\|z\|_{H}\|d\|_{L^{2}(0,1)} \leq \frac{1}{\varepsilon_{2}}\|z\|_{H}^{2}+\varepsilon_{2}\|d\|_{L^{2}(0,1)}^{2}$, one has

$$
\begin{aligned}
\frac{2 M}{3} \frac{d}{d t}\|z\|_{H}^{3}= & M\|z\|\left(\langle A z, z\rangle_{H}+\langle z, A z\rangle_{H}\right) \\
& -2 M\left\|_{z}\right\|_{H}\left\langle B \operatorname{sat}_{2}\left(B^{\star} z+d\right), z\right\rangle_{H} \\
\leq & -2 M\|z\|_{H}\left(\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)}\right. \\
& \left.+\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{L^{2}(0,1)}\right) \\
\leq & -2 M\|z\|_{H}\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)} \\
& +2 M C_{0}\|z\|_{H}\|d\|_{L^{2}(0,1)}
\end{aligned}
$$

Secondly, using the dissipativity of the operator $A_{\text {sat }}$, $\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{L^{2}(0,1)} \leq C_{0}\|d\|_{L^{2}(0,1)}$, and $\|z\|_{H}\|d\|_{L^{2}(0,1)} \leq \frac{1}{\varepsilon_{2}}\|z\|_{H}^{2}+\varepsilon_{2}\|d\|_{L^{2}(0,1)}^{2}$, one has

$$
\begin{aligned}
\frac{2 M}{3} \frac{d}{d t}\|z\|_{H}^{3}= & M\|z\|\left(\langle A z, z\rangle_{H}+\langle z, A z\rangle_{H}\right) \\
& -2 M\|z\|_{H}\left\langle B \operatorname{sat}_{2}\left(B^{\star} z+d\right), z\right\rangle_{H} \\
\leq & -2 M\|z\|_{H}\left(\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)}\right. \\
& \left.+\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right)-\operatorname{sat}_{2}\left(B^{\star} z+d\right), B^{\star} z\right\rangle_{L^{2}(0,1)}\right) \\
\leq & -2 M\|z\|_{H}\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)} \\
& +2 M C_{0}\left\|_{z}\right\|_{H}\|d\|_{L^{2}(0,1)} \\
\leq & -2 M\|z\|_{H}\left\langle\operatorname{sat}_{2}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)} \\
& +\frac{2 M C_{0}}{\varepsilon_{2}}\|z\|_{H}^{2}+2 M C_{0} \varepsilon_{2}\|d\|_{L^{2}(0,1)}^{2}
\end{aligned}
$$

where ε_{2} is a positive value that has to be selected. For an appropriate choice of M, ε_{1} and ε_{2} we deduce the result.

3 - with localized saturation map

What happens with sat instead of $s a t_{2}$? What is the speed of convergence of

$$
\left\{\begin{array}{c}
\frac{d}{d t} z=A z-B \operatorname{sat}\left(B^{\star} z\right) \tag{13}\\
z(0)=z_{0}
\end{array}\right.
$$

Theorem

Hence, the origin of (13) is semi-globally exponentially stable in $D(A)$, that is for any positive r and any z_{0} in $D(A)$ satisfying $\left\|z_{0}\right\|_{D(A)} \leq r$, there exist two positive constants $\mu:=\mu(r)$ and $K:=K(r)$ such that

$$
\begin{equation*}
\left\|W_{\sigma}(t) z_{0}\right\|_{H} \leq K e^{-\mu t}\left\|z_{0}\right\|_{H}, \quad \forall t \geq 0 . \tag{14}
\end{equation*}
$$

Remarks • on Korteweg-de Vries equation: [Rosier, Zhang; 2006] and [Marx, Cerpa, CP, Andrieu; 2017]
We may deduce a global asymptotic stability (but without any estimation of the convergence speed)

- In our work the monotonicity is crucial and also only 1D See [Martinez, Vancostenoble; 2000] for $N \leq 2$. See also last part of this presentation for $N=1$

Theorem

Hence, the origin of (13) is semi-globally exponentially stable in $D(A)$, that is for any positive r and any z_{0} in $D(A)$ satisfying $\left\|z_{0}\right\|_{D(A)} \leq r$, there exist two positive constants $\mu:=\mu(r)$ and $K:=K(r)$ such that

$$
\begin{equation*}
\left\|W_{\sigma}(t) z_{0}\right\|_{H} \leq K e^{-\mu t}\left\|z_{0}\right\|_{H}, \quad \forall t \geq 0 . \tag{14}
\end{equation*}
$$

Remarks • on Korteweg-de Vries equation: [Rosier, Zhang; 2006] and [Marx, Cerpa, CP, Andrieu; 2017].
We may deduce a global asymptotic stability (but without any estimation of the convergence speed).

See [Martinez, Vancostenoble; 2000] for $N \leq 2$. See also last part of this presentation for $N=1$

Theorem

Hence, the origin of (13) is semi-globally exponentially stable in $D(A)$, that is for any positive r and any z_{0} in $D(A)$ satisfying $\left\|z_{0}\right\|_{D(A)} \leq r$, there exist two positive constants $\mu:=\mu(r)$ and $K:=K(r)$ such that

$$
\begin{equation*}
\left\|W_{\sigma}(t) z_{0}\right\|_{H} \leq K e^{-\mu t}\left\|z_{0}\right\|_{H}, \quad \forall t \geq 0 . \tag{14}
\end{equation*}
$$

Remarks • on Korteweg-de Vries equation: [Rosier, Zhang; 2006] and [Marx, Cerpa, CP, Andrieu; 2017].
We may deduce a global asymptotic stability (but without any estimation of the convergence speed).

- In our work the monotonicity is crucial and also only 1D See [Martinez, Vancostenoble; 2000] for $N \leq 2$. See also last part of this presentation for $N=1$.

Sketch of the proof

Let $\tilde{V}(z)$ be the Lyapunov function candidate defined by

$$
z \in D(A) \mapsto \tilde{V}(z):=\langle P z, z\rangle_{H}+\tilde{M}\left\|_{z}\right\|_{H}^{2}
$$

where $\tilde{M}>0$ will be selected later. As before, using the dissipativity of the operator $A-B^{\star} B$, one has

$$
\begin{equation*}
\frac{d}{d t} \tilde{M}\|z\|_{H}^{2} \leq-2 \tilde{M}\left\langle B^{\star} z, \operatorname{sat}\left(B^{\star} z\right)\right\rangle_{L^{2}(0,1)} \tag{15}
\end{equation*}
$$

and

$$
\frac{d}{d t}\langle P z, z\rangle_{H} \leq-\|z\|_{H}^{2}+2\left\langle B^{\star} P z, B^{\star} z-\operatorname{sat}\left(B^{\star} z\right)\right\rangle_{L^{2}(0,1)}
$$

The term $2\left\langle B^{\star} P z, B^{\star} z-\operatorname{sat}\left(B^{\star} z\right)\right\rangle_{L^{2}(0,1)}$ is "controlled" differently.

Consider $r>0$ and a strong solution for (13), whose initial condition $z_{0} \in D(A)$ is such that

$$
\left\|z_{0}\right\|_{D(A)} \leq r
$$

First note that, from the dissipativity, it implies $\|z(t)\|_{D(A)} \leq r$ for all $t \geq 0$.

$$
\begin{aligned}
& \left|\left\langle B^{\star} P z, B^{\star} z-\operatorname{sat}\left(B^{\star} z\right)\right\rangle_{L^{2}(0,1)}\right| \\
& \quad \leq\left\|B^{\star} P_{z}\right\|_{L^{\infty}(0,1)}\left\|B^{\star} z-\operatorname{sat}\left(B^{\star} z\right)\right\|_{L^{1}(0,1)} \\
& \quad \leq C\|P z\|_{D(A)}\left\|B^{\star} z-\operatorname{sat}\left(B^{\star} z\right)\right\|_{L^{1}(0,1)} \\
& \quad \leq C^{\prime}\|P\|_{\mathcal{L}(D(A))}\|z\|_{D(A)}\left\langle\operatorname{sat}\left(B^{\star} z\right), B^{\star} z\right\rangle_{L^{2}(0,1)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{d \tilde{V}}{d t} & \leq-\|z\|_{H}^{2}-2\left(\tilde{M}-C^{\prime}\|P\|_{\mathcal{L}(D(A))}\|z\|_{D(A)}\right)\left\langle\operatorname{sat}\left(B^{\star} z\right), B^{\star} z\right\rangle \\
& \leq-\|z\|_{H}^{2}-2\left(\tilde{M}-C^{\prime}\|P\|_{\mathcal{L}(D(A))} r\right)\left\langle\operatorname{sat}\left(B^{\star} z\right), B^{\star} z\right\rangle \\
& \leq-\|z\|_{H}^{2}
\end{aligned}
$$

for a suitable \tilde{M}. The result follows.

4 - Case of a non-monotone damping

Consider again the controlled wave equation:

$$
\left\{\begin{array}{l}
z_{t t}=z_{x x}+u, \quad(t, x) \in \mathbb{R}_{+} \times[0,1] \\
z(t, 0)=z(t, 1)=0, \quad t \in \mathbb{R}_{+} \\
z(0, x)=z_{0}(x), z_{t}(0, x)=z_{1}(x), \quad x \in[0,1]
\end{array}\right.
$$

Nonlinear damping σ law given by the damping
$u(t, x)=-\sqrt{a(x)} \sigma\left(\sqrt{a(x)} z_{t}(t, x)\right)$ where $\forall x \in \omega, a_{0}<a(x) \leq a_{\infty}, a_{0}>$

References

[Martinez; 99], [Martinez, Vancostenoble; 00]

Question

What about nonmonotone nonlinearities σ ?

Nonmonotone damping

Nonmonotone damping

A function σ is a nonmonotone damping if

1. it is locally Lipschitz
2. $\sigma(0)=0$
3. for all $s \in \mathbb{R}, \sigma(s) s>0$
4. the function σ is differentiable at $s=0$ with $\sigma^{\prime}(0)=C_{1}$, where C_{1} is a positive constant.

Nonmonotone damping

for example: $\sigma(s)=\operatorname{sat}\left(\frac{1}{4} s-\frac{1}{30} \sin (10 s)\right)$

Regularity issues

Since the function σ is (possibly) nonmonotone, then the LaSalle's Invariance Principle does not apply !

Moreover, the classical functional setting

$$
H=H_{0}^{1}(0,1) \times L^{2}(0,1)
$$

is not sufficient to ensure a L^{∞} regularity for the state z_{t}.
Solution (inspired by [Haraux; 2009])
Our solution consists in using the functional setting

$$
H_{p}:=\left(W^{1, p}(0,1) \cap H_{0}^{1}(0,1)\right) \times L^{p}(0,1)
$$

where $p \in[1, \infty]$.

Main results

$$
\left\{\begin{array}{l}
z_{t t}=z_{x x}-\sqrt{a(x)} \sigma\left(\sqrt{a(x)} z_{t}\right),(t, x) \in \mathbb{R}_{+} \times[0,1] \tag{Sys}\\
z(t, 0)=z(t, 1)=0, t \in \mathbb{R}_{+} \\
z(0, x)=z_{0}(x), z_{t}(0, x)=z_{1}(x), x \in[0,1]
\end{array}\right.
$$

Theorem [Chitour, Marx, CP; under submission] (well-posedness)
\forall initial condition $\left(z_{0}, z_{1}\right) \in H_{\infty}, \exists$! solution
$\left(z, z_{t}\right) \in L^{\infty}\left(\mathbb{R}_{+} ; W^{1, \infty}(0,1)\right) \times W^{1, \infty}\left(\mathbb{R}_{+} ; L^{\infty}(0,1)\right)$ to (Sys). Moreover, one has

$$
\left\|\left(z, z_{t}\right)\right\|_{H_{\infty}(0,1)} \leq 2 \max \left(\left\|z_{0}^{\prime}\right\|_{L^{\infty}(0,1)},\left\|z_{1}\right\|_{L^{\infty}(0,1)}\right)
$$

Main results

$$
\left\{\begin{array}{l}
z_{t t}=z_{x x}-\sqrt{a(x)} \sigma\left(\sqrt{a(x)} z_{t}\right),(t, x) \in \mathbb{R}_{+} \times[0,1] \tag{Sys}\\
z(t, 0)=z(t, 1)=0, t \in \mathbb{R}_{+} \\
z(0, x)=z_{0}(x), z_{t}(0, x)=z_{1}(x), x \in[0,1] .
\end{array}\right.
$$

Theorem [Chitour, Marx, CP; under submission] (convergence)
Given $r>0$. Consider initial conditions in H_{∞} satisfying

$$
\left\|\left(z_{0}, z_{1}\right)\right\|_{H_{\infty}} \leq r .
$$

Then, $\forall p \in[2, \infty), \exists K:=K(r)$ and $\mu:=\mu(r)$ such that

$$
\left\|\left(z, z_{t}\right)\right\|_{H_{p}} \leq K e^{-\mu t}\left\|\left(z_{0}, z_{1}\right)\right\|_{H_{p}}, \forall t \geq 0 .
$$

Well-posedness proof (1)

- Fixed-point theorem \Rightarrow existence and uniqueness in $[0, T]$.
- The estimate is proved thanks to the following result

Theorem [Haraux; 2009]

Let us consider initial condition in H_{∞}. Let us introduce the following functional

$$
\phi\left(z, z_{t}\right)=\int_{0}^{1}\left[F\left(z-z_{t}\right)+F\left(z+z_{t}\right)\right] d x
$$

where F is any even and convex function. Then, the time derivative of ϕ along the trajectories of (Sys) satisfies

$$
\frac{d}{d t} \phi\left(z, z_{t}\right) \leq 0
$$

Well-posedness proof (2)

Due to the latter theorem, one has $\phi\left(z, z_{t}\right) \leq \phi\left(z_{0}, z_{1}\right)$, for all $t \geq 0$. Then, the result follows by setting

$$
F(s):=\left[\operatorname{Pos}\left(|s|-2 \max \left(\left\|z_{0}^{\prime}\right\|_{L^{\infty}(0,1)},\left\|z_{1}\right\|_{L^{\infty}(0,1)}\right)\right]\right.
$$

where

$$
\operatorname{Pos}(s):=\left\{\begin{array}{l}
s \text { if } s>0 \\
0 \text { if } s \leq 0
\end{array}\right.
$$

This implies that $\phi\left(z, z_{t}\right)=0$ and then, for all $t \geq 0$

$$
\left\|\left(z, z_{t}\right)\right\|_{H_{\infty}(0,1)} \leq 2 \max \left(\left\|z_{0}^{\prime}\right\|_{L^{\infty}(0,1)},\left\|z_{1}\right\|_{L^{\infty}(0,1)}\right)
$$

Question

What about the asymptotic stability ?

Steps

Consider (Sys), with initial conditions in H_{∞}. Thanks to this regularity:

1. Prove the result in $H_{2}=H_{0}^{1}(0,1) \times L^{2}(0,1)$
2. Deduce the result in H_{p} by an interpolation theorem (Riesz-Thaurin theorem), with

$$
H_{p}=\left(W^{1, p}(0,1) \cap H_{0}^{1}(0,1)\right) \times L^{p}(0,1)
$$

Strategy

Transforming the nonlinear time-invariant system as a trajectory of a linear time-variant system.

A detour via linear time-variant systems

System (Sys) can be seen as a trajectory of a linear time-variant system (LTV).

$$
\left\{\begin{array}{l}
z_{t t}=z_{x x}-a(x) d(t, x) z_{t}, \quad(t, x) \in \mathbb{R}_{+} \times[0,1] \tag{LTV-wave}\\
z(t, 0)=z(t, 1)=0, \quad t \in \mathbb{R}_{+}, \\
z(0, x)=z_{0}(x), z_{t}(0, x)=z_{1}(x), \quad x \in[0,1]
\end{array}\right.
$$

where

$$
d(t, x)= \begin{cases}\frac{\sigma\left(\sqrt{a(x)} z_{t}\right)}{\sqrt{a(x)} z_{t}}, & \sqrt{a(x)} z_{t} \neq 0 \\ C_{1}, & \sqrt{a(x)} z_{t}=0\end{cases}
$$

where $C_{1}=\sigma^{\prime}(0)$.

Abstract system

Let us recall that $H_{2}=H_{0}^{1}(0,1) \times L^{2}(0,1)$ and let us introduce $U=L^{2}(0,1)$. Consider the abstract system

$$
\left\{\begin{array}{l}
\frac{d}{d t} y=A y-d(t) B B^{\star} y:=A_{d}(t) y \\
y(\tau)=y_{\tau}, \tau \geq 0
\end{array}\right.
$$

(Abstract)
with $y=\left[\begin{array}{ll}z & z_{t}\end{array}\right]^{\top}, A: D(A) \subset H_{2} \rightarrow H_{2}$ defined as

$$
A=\left[\begin{array}{cc}
0 & I_{H_{2}} \\
\partial_{x x} & 0
\end{array}\right], B=\left[\begin{array}{ll}
0 & \sqrt{a(x)} I_{H_{2}}
\end{array}\right]^{\top},
$$

with $D(A)=\left(H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \times H_{0}^{1}(0,1)$.

Trajectories

(Sys) and (Abstract) share one trajectory, i.e. when $\tau=0$.

An abstract result

Proposition (for convergence result)

Suppose that there exist $d_{0}, d_{1}>0$ such that

$$
d_{0} \leq d(t) \leq d_{1}
$$

Then, if

$$
\left\{\begin{array}{c}
\frac{d}{d t} y=A y-d_{0} B B^{\star} y:=A_{d_{0}} y \\
y(0)=y_{0}
\end{array}\right.
$$

is exponentially stable, the trajectory of (Abstract) with $\tau=0$ converges to 0 .

Lyapunov proof of this proposition

Exponential stability $\Rightarrow \exists \widehat{P} \in \mathcal{L}\left(H_{2}\right)$ and $C>0$ such that

$$
\left\langle\widehat{P} y, A_{d_{0}}\right\rangle_{H_{2}}+\left\langle\widehat{P} A_{d_{0}} y, y\right\rangle_{H_{2}} \leq-C\|y\|_{H_{2}}^{2}
$$

Time derivative of the Lyapunov functional

$$
\widehat{V}(y):=\langle\widehat{P} y, y\rangle_{H_{2}}+\widehat{M}\|y\|_{H_{2}}^{2}
$$

along the trajectories of (Abstract) with $\widehat{M}=\frac{2\left(d_{1}-d_{0}\right)\|\widehat{P}\|_{\mathcal{L}\left(H_{2}\right)}}{d_{0}\|B\|_{\mathcal{L}\left(H_{2}, U\right)}}$,

$$
\frac{d \widehat{V}}{d t}(y) \leq-C\|y\|_{H_{2}}^{2}
$$

Then,

$$
\|y\|_{H_{2}}^{2} \leq \frac{\|\widehat{P}\|_{\mathcal{L}\left(H_{2}\right)}+\widehat{M}}{\widehat{M}} \exp \left(-\frac{C}{\|\widehat{P}\|_{\mathcal{L}\left(H_{2}\right)}+\widehat{M}} t\right)\left\|y_{0}\right\|_{H_{2}}^{2}, \forall t \geq 0
$$

Back to the proof of convergence result

Recall that

$$
d(t, x)= \begin{cases}\frac{\sigma\left(\sqrt{a}(x) z_{t}\right)}{\sqrt{a(x)} z_{t}}, & \sqrt{a(x)} z_{t} \neq 0 \\ C_{1}, & \sqrt{a(x)} z_{t}=0\end{cases}
$$

and that

$$
\left\|\left(z, z_{t}\right)\right\|_{H_{\infty}(0,1)} \leq 2 \max \left(\left\|z_{0}^{\prime}\right\|_{L^{\infty}(0,1)},\left\|z_{1}\right\|_{L^{\infty}(0,1)}\right) \leq 2 r
$$

then

$$
\begin{aligned}
& d_{0}:=\min _{\xi \in\left[-2 \sqrt{a_{\infty} r}, 2 \sqrt{a_{\infty}} r\right]} \frac{\sigma(\xi)}{\xi} \leq d(t, x) \\
& \leq \max _{\xi \in\left[-2 \sqrt{a_{\infty} r} r, 2 \sqrt{a_{\infty}} r\right]} \frac{\sigma(\xi)}{\xi}:=d_{1} .
\end{aligned}
$$

Then, one can prove easily that

$$
\left\|\left(z, z_{t}\right)\right\|_{H_{2}} \leq K(r) e^{-\mu(r) t}\left\|\left(z_{0}, z_{1}\right)\right\|_{H_{2}}
$$

which is the result.

5 - Conclusion and further research lines

Results

(1) Asymptotic stability in H_{p} for non-monotone damping
(2) Semi-global exponential stability in H for monotone damping
(3) Instead of wave equations, abstract operator theories could be developped

Further research lines

(1) What about quasilinear hyperbolic systems

$$
\left\{\begin{array}{l}
z_{t}+\Lambda(z) z_{x}=0 \\
z(t, 0)=H z(t, 1)+B u(t) ?
\end{array}\right.
$$

See [Coron, Ervedoza, Ghoshal, Glass, Perrollaz; 17], and the current work of M. Dus for BV solutions.
(2) N-dimensional wave equations ?
$N \leq 2$ in [Martinez, Vancostenoble; 2000]

Bonus - Wave equation with a boundary control

1D wave equation with a boundary control.
Dynamics:

$$
\begin{equation*}
z_{t t}(x, t)=z_{x x}(x, t), \forall x \in(0,1), t \geq 0 \tag{16}
\end{equation*}
$$

Boundary conditions, $\forall t \geq 0$,

$$
\begin{align*}
z(0, t) & =0 \tag{17}\\
z_{x}(1, t) & =g(t),
\end{align*}
$$

and with the same initial condition, $\forall x \in(0,1)$,

$$
\begin{align*}
z(x, 0) & =z^{0}(x) \tag{18}\\
z_{t}(x, 0) & =z^{1}(x)
\end{align*}
$$

When closing the loop with a linear boundary control

Let us define the linear control by

$$
\begin{equation*}
g(t)=-b z_{t}(1, t), x \in(0,1), \forall t \geq 0 \tag{19}
\end{equation*}
$$

and consider

$$
E_{2}=\frac{1}{2} \int\left(e^{\mu x}\left(z_{t}+z_{x}\right)^{2} d x+\int\left(e^{-\mu x}\left(z_{t}-z_{x}\right)^{2} d x\right.\right.
$$

Formal computation. Along the solutions to (16), (17) and (19):

$$
\dot{E}_{2}=-\mu E_{2}+\frac{1}{2}\left(e^{\mu}(1-b)^{2}-e^{-\mu}(1+b)^{2}\right) z_{t}^{2}(1, t)
$$

Assuming $b>0$ and letting $\mu>0$ such that
$e^{\mu}(1-b)^{2} \leq e^{-\mu}(1+b)^{2}$, it holds $E_{2} \leq-\mu E_{2}$ and thus E_{2} is a
strict Lyapunov function and thus (16)-(19) is exponentially stable.

When closing the loop with a linear boundary control

Let us define the linear control by

$$
\begin{equation*}
g(t)=-b z_{t}(1, t), x \in(0,1), \forall t \geq 0 \tag{19}
\end{equation*}
$$

and consider

$$
E_{2}=\frac{1}{2} \int\left(e^{\mu x}\left(z_{t}+z_{x}\right)^{2} d x+\int\left(e^{-\mu x}\left(z_{t}-z_{x}\right)^{2} d x\right.\right.
$$

Formal computation. Along the solutions to (16), (17) and (19):

$$
\dot{E}_{2}=-\mu E_{2}+\frac{1}{2}\left(e^{\mu}(1-b)^{2}-e^{-\mu}(1+b)^{2}\right) z_{t}^{2}(1, t)
$$

Assuming $b>0$ and letting $\mu>0$ such that $e^{\mu}(1-b)^{2} \leq e^{-\mu}(1+b)^{2}$, it holds $\dot{E}_{2} \leq-\mu E_{2}$ and thus E_{2} is a strict Lyapunov function and thus (16)-(19) is exponentially stable.

When closing the loop with a saturating control

Let us consider now the nonlinear control $g(t)=-\operatorname{sat}\left(b z_{t}(1, t)\right), \forall t \geq 0$. The boundary conditions become:

$$
\begin{equation*}
z(0, t)=0, \quad z_{x}(1, t)=-\operatorname{sat}\left(b z_{t}(1, t)\right) \tag{20}
\end{equation*}
$$

Theorem (stability with boundary control)
$\forall b>0$, for all $\left(z^{0}, z^{1}\right)$ in $\{(u, v),(u, v) \in$ $\left.H^{2}(0,1) \times H_{(0)}^{1}(0,1), u_{x}(1)+\operatorname{sat}(b v(1))=0, u(0)=0\right\}$, the solution to (16) with the boundary conditions (20) and the initial condition (5) satisfies the following stability property, $\forall t \geq 0$,

$$
\|z(., t)\|_{H_{(0)}^{1}(0,1)}+\left\|z_{t}(., t)\right\|_{L^{2}(0,1)} \leq\left\|z^{0}\right\|_{H_{(0)}^{1}(0,1)}+\left\|z^{1}\right\|_{L^{2}(0,1)}
$$

together with the attractivity property

$$
\|z(., t)\|_{H_{(0)}^{1}(0,1)}+\left\|z_{t}(., t)\right\|_{L^{2}(0,1)} \rightarrow 0, \quad \text { as } t \rightarrow \infty
$$

To prove the well-posedness of the Cauchy problem we prove that A_{2} defined by

$$
A_{2}\binom{u}{v}=\binom{v}{u^{\prime \prime}}
$$

with the domain $D\left(A_{2}\right)=\{(u, v),(u, v) \in$ $\left.H^{2}(0,1) \times H_{(0)}^{1}(0,1), u^{\prime}(1)+\operatorname{sat}(b v(1))=0, u(0)=0\right\}$ is a semigroup of contraction.

The g
of A_{2}.

The global attractivity property comes from the following lemma:

To prove the well-posedness of the Cauchy problem we prove that A_{2} defined by

$$
A_{2}\binom{u}{v}=\binom{v}{u^{\prime \prime}}
$$

with the domain $D\left(A_{2}\right)=\{(u, v),(u, v) \in$ $\left.H^{2}(0,1) \times H_{(0)}^{1}(0,1), u^{\prime}(1)+\operatorname{sat}(b v(1))=0, u(0)=0\right\}$ is a semigroup of contraction.

The global stability property comes directly from the dissipativity of A_{2}.

The global attractivity property comes from the following lemma:

Lemma (semi-global exponential stability)
For all $r>0$, there exists $\mu>0$ such that, for all initial condition satisfying

$$
\begin{equation*}
\left\|z^{0 / \prime}\right\|_{L^{2}(0,1)}^{2}+\left\|z^{1}\right\|_{H_{(0)}^{1}(0,1)}^{2} \leq r^{2} \tag{21}
\end{equation*}
$$

it holds

$$
\dot{E}_{2} \leq-\mu E_{2}
$$

along the solutions to (16) with the boundary conditions (20).

Sketch of the proof of this lemma

First note that by dissipativity of A_{2}, it holds that

$$
t \mapsto\left\|A_{2}\binom{z(., t)}{z_{t}(., t)}\right\|_{H}
$$

is a non-increasing function. Thus, for all $t \geq 0$,

$$
\left|z_{t}(1, t)\right| \leq\left\|A_{2}\binom{z(., 0)}{z_{t}(., 0)}\right\|_{H} .
$$

Now for all initial conditions satisfying (21), there exists $c \neq b$ such that, for all $t \geq 0$,

$$
(b-c)\left|z_{t}(1, t)\right| \leq 1
$$

and thus the following local sector condition holds:

Letting $\sigma=z_{t}(1, t)$, it holds
$(\operatorname{sat}(b \sigma)-b \sigma)(\operatorname{sat}(b \sigma)-(b-c) \sigma) \leq 0$

We come back to the Lyapunov function candidate E_{2}. Given $b>0$, using the previous inequality, we compute

$$
\dot{E}_{2}=-\mu E_{2}+e^{\mu}(\sigma-\operatorname{sat}(b \sigma))^{2}-e^{-\mu}(\sigma+\operatorname{sat}(b \sigma))^{2}
$$

with a suitable choice of constant values μ and c The semi-global exponential stability follows.

We come back to the Lyapunov function candidate E_{2}. Given $b>0$, using the previous inequality, we compute

$$
\begin{aligned}
\dot{E}_{2}= & -\mu E_{2}+e^{\mu}(\sigma-\operatorname{sat}(b \sigma))^{2}-e^{-\mu}(\sigma+\operatorname{sat}(b \sigma))^{2} \\
\leq & -\mu E_{2}+(\underset{\substack{\sigma \\
\operatorname{sat}(b \sigma) \\
\sigma}}{ })^{\top}\left(\begin{array}{cc}
e^{\mu}-e^{-\mu}-b^{2}(b-c) & -e^{\mu}-e^{-\mu}+b+b(b-c) \\
-e^{\mu}-e^{-\mu}+b+b(b-c) & \left.-1+e^{\mu}-e^{-\mu}-c\right)
\end{array}\right) \\
& \times(\underset{\substack{\tau \\
\operatorname{sat}(b \sigma)}}{ })
\end{aligned}
$$

$\leq-\mu E_{2}$
with a suitable choice of constant values μ and c. The semi-global exponential stability follows.

We come back to the Lyapunov function candidate E_{2}. Given $b>0$, using the previous inequality, we compute

$$
\begin{aligned}
\dot{E}_{2} & =-\mu E_{2}+e^{\mu}(\sigma-\operatorname{sat}(b \sigma))^{2}-e^{-\mu}(\sigma+\operatorname{sat}(b \sigma))^{2} \\
\leq & -\mu E_{2}+\binom{\sigma}{\operatorname{sat}(b \sigma)}^{\top}\left(\begin{array}{cc}
e^{\mu}-e^{-\mu}-b^{2}(b-c) & -e^{\mu}-e^{-\mu}+b+b(b-c) \\
-e^{\mu}-e^{-\mu}+b+b(b-c) & -1+e^{\mu}-e^{-\mu}
\end{array}\right) \\
& \times\left(\begin{array}{c}
\operatorname{sat}(b \sigma)
\end{array}\right) \\
\leq & -\mu E_{2}
\end{aligned}
$$

with a suitable choice of constant values μ and c.
The semi-global exponential stability follows.
Back to the wave equation with in-domain control

[^0]: ${ }^{1} \alpha:[0, \infty) \rightarrow[0, \infty)$ is of class \mathcal{K} if it is continuous, zero at zero and increasing. It is of class \mathcal{K}_{∞} if it is moreover unbounded.

