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Non Convex Calculus of Variations

(P) inf{
∫

Ω

(g(∇u) + f (x , u))dx , u ∈W 1,p
0 (Ω) + Φ}

To have weak l.s.c., we need a hypothesis of quasiconvexity on g .
g is quasiconvex if

∀A ∈ MN,N , ∀ϕ ∈ C∞0 (Ω),

∫
Ω

g(A +∇ϕ)dx ≥
∫

Ω

g(A)dx .

Relaxed problem

(PR) inf{
∫

Ω

(g∗∗(∇u) + f (x , u))dx , u ∈W 1,p
0 (Ω) + Φ}

Regularized problem
θε regularizing sequence, g∗∗ε = g∗∗ ? θε

(PRε) inf{
∫

Ω

(g∗∗ε (∇u) + f (x , u) + ε|∇u|2)dx , u ∈W 1,p
0 (Ω) + Φ}
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Sufficient condition of optimality :
If u is solution of (PR) and if
meas{x ∈ Ω, g∗∗(∇u(x)) 6= g(∇u(x))} = 0, then u is solution of (P).
Here :
No hypothesis of convexity for g .
Natural hypothesis on g and f , in particular coercivity of g (at infinity)
in W 1,p

0 .
Affinity hypothesis (natural) :
K = {V ∈ RN , g∗∗(V ) < g(V )} = ∪mi=1Ki , g

∗∗ is affine on Ki .
Ω is uniformly convex and Φ is Lipschitz

Theorem

If ∀u ∈ R, fu(x , u) 6= 0, then (P) admits Lipschitz solutions.

Existence result without convexity hypothesis.
Analogous result for vector valued functions u.
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Method

-Obtention of bounded Lipschitz solutions for (PRε).
-Obtention of Lipschitz solutions for (PR).
-Regularity in H1

loc of adjoint solutions for Lipschitz solutions of (PR).

If u is solution of (PR), from Euler equation, there exists q ∈ Lp
′
(Ω)N

such that

∇g∗∗(∇u(x)) = q(x) a.e., div q = fu(., u) inD′(Ω).

Adjoint solution

−
∫

Ω

div ξ(x)u(x)dx =

∫
Ω

g∗qj (q(x))ξj(x)dx

∀ξ ∈ Lp
′
(Ω)N , dist(∂Ω,Suppξi ) > 0, div ξ ∈ Lp

′
(Ω), g∗qj (q) ∈ ∂g∗(q).

div q = fu(., u) inD′(Ω).
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If u is a Lipschitz solution of (PR),

Ei = {x ∈ Ω, u is differentiable at x , ∇u(x) ∈ Ki}.

Then

∃γi ∈ RN such that ∀x ∈ Ei , ∇g∗∗(∇u(x)) = γi = q(x).

As q ∈ H1
loc , we have div q(x) = 0, a.e. in Ei .

But div q(x) = fu(x , u)x)) 6= 0. This leads to a contradiction except if
meas(Ei ) = 0.
Then

meas{x , g∗∗(∇u(x)) 6= g(∇u(x))} = 0

and u is solution of (P).
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Optimal control problem with state constraints

Optimal control problem for semilinear parabolic equations with state
constraints.
Case of a priori unbounded controls.
Work in collaboration with H. Zidani.

∂y

∂t
−∆y + f (x , t, y) = 0, in Ω× (0,T ) = Q,

∂y

∂ν
+ g(s, t, y , v) = 0, on Γ× (0,T ) = Σ,

y(0) = w .

v ,w : controls, v ∈ Vad ⊂ Lσ(Σ) , w ∈Wad ⊂ C (Ω̄).
Φ(y) ∈ C ⊂ C (D̄) closed and convex.

(P) inf{J(y , v ,w), (y , v ,w) ∈ C (Q̄)× Vad ×Wad , Φ(y) ∈ C}

J(y , v ,w) =

∫
Q

F (x , t, y)dxdt+

∫
Σ

G (s, t, y , v)dsdt+

∫
Ω

L(x , y(T ),w)dx .
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A priori unbounded controls and

Vad = {v ∈ Lσ(Σ), v(s, t) ∈ Kv (s, t) a.e.}

with Kv multimapping with non empty closed convex values in the
subsets of R.
Regularity for f , g ,Φ,F ,G , L, f and g not too much non monotone
(derivatives bounded from below).
Hypothesis of strong stability :

Cγ = {ϕ ∈ C (D̄), inf
z∈C
||ϕ− z ||C(D̄) ≤ γ.

(Pγ): inf on Cγ .
Hypothesis :
∃ε̄, ∃r̄ , ∀γ′ ∈ [γ, γ + ε̄], inf(Pγ)− inf(Pγ′) ≤ r̄(γ′ − γ).
Existence of optimal control (v̄ , w̄) is assumed corresponding to ȳ .
Look for optimality conditions in the form of Pontryagin maximum
principle via an extension of Ekeland variational principle.
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Theorem

∃p̄ ∈ L1(0,T ;W 1,1(Ω)), ∃ν̄ ∈ R, ∃µ̄ ∈M(D̄),∃Σ̃ ⊂ Σ, such that
(without strong stability)

(ν̄, µ̄) 6= 0, ν̄ ≥ 0, (µ̄, z − Φ(ȳ) ≤ 0∀z ∈ C ,

−∂p̄
∂t
−∆p̄ + f ′y p̄ = ν̄F ′y + [Φ′(y)∗µ̄]Q ,

∂p̄

∂ν
+ g ′y p̄ − ν̄G ′y + [Φ′(y)∗µ̄]Σ,

p̄(T ) = ν̄L′y + [Φ′(y)∗µ̄]ΩT
,

HΣ(s, t, ȳ , v̄ , p̄, ν̄) = min v ∈ Kv (s, t)HΣ(s, t, ȳ .v , p̄, ν̄)∀(s, t) ∈ Σ̃,

meas(Σ̃) = meas(Σ),∫
Ω

ν̄L′w (w̄ − w)+ < p̄(0) + [Φ′(y)∗µ̄]Ω0 , w̄ − w >≤ 0, forallw ∈Wad ,

with
HΣ(s, t, y , v , p, ν) = νG (s, t, y , v)− pg(s, t, y , v).

With strong stability, we can take ν̄ = 1.
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Method ; To find a good setting to be able to apply the Ekeland
variational principle to a penalized functional. Impossible to use it
directly with unbounded controls because the Ekeland metric does not
imply convergence in a Lebesgue space.
Ekeland variational principle : (X , d) a metric space and
J : X → [0,+∞] l.s.c and not identically +∞.
x ∈ X such that J(x) ≤ inf J + ε. Then ∀δ, ∃y ∈ X such that

J(y) ≤ J(x), d(x , y) ≤ δ and ∀z ∈ X \ {y}, J(y) ≤ J(z) +
ε

δ
d(z , y).

Here the authors take

Vad(ṽ , k) = {v ∈ Vad , |v(s, t)− ṽ(s, t)| ≤ k a.e. on Σ}

d((v1,w1), (v2,w2)) = meas({(s, t) v1(s, t) 6= v2(s, t)}) + ||w1 − w2||∞.

Then (Vad(ṽ , k)×Wad , d) is a complete metric space and J is
continuous.
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They construct admissible perturbations of approximate optimal solutions
via a ”diffuse perturbation” the existence of which is proved using the
convexity Lyapunov theorem.
They obtain Pontryagin maximum principle by exploiting optimality
conditions for the approximate problems
Details of proofs is quite delicate and use very fine notions of integration
and measure theory.
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Null controllability of a fluid-structure model

Work in collaboration with M. Vanninathan.
They consider Stokes system on a 2-d fixed domain Ω of annular type
with boundary Γe ∪ Γi , Γe ∩ Γi = ∅, coupled with a structure which can
only have translations but can vibrate like a N-finite dimensional
approximation of an elasticity system.

y ′ −∆y +∇π = u.ξomega in Ω× (0,T ),

div y = 0

y = 0 in Γe × (0,T ),

y(0) = y0,

y = Mq′ i n Γi × (0,T ),

q′′ + Aq = −
∫

Γi

MTσ(y , n)ndσ,

q(0) = q0, q′(0) = q1.

For simplicity , M = I , N = 2 and A = I .
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Theorem

∀y0 ∈ L2(Ω), div y0 = 0, ∀q0 ∈ R2, q1 ∈ R2 with y0.n = q1.n on Γi and
Y 0.n = 0 on Γe , there exists u ∈ L2(Q) such that

y(T ) = 0, q(T ) = 0, q′(T ) = 0.

Method : proofs are based on an observability inequality for the adjoint
system which is obtained from ad’hoc global Carleman estimates.
Adjoint system (after time reversal)

Φ′ −∆Φ +∇p = 0 in Ω× (0,T ),

divΦ = 0,

Φ = r ′ i n Γi × (0,T ), Φ = 0 in Γe × (0,T ),

r ′′ + r = −
∫

Γi

σ(Φ, p)n

Φ(0 = Φ0, r(0) = r0, r ′(0) = r1.
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Several steps :
(i) Carleman estimate for the fluid (Φ) in function of ∇p with local term
in Φ on ω.
(ii) Treatment of boundary terms.
(iii) Carleman estimate on the pressure (p) with local term on the
pressure and trace of the pressure.
(iv) Estimate on the trace of the pressure involving a term on the
structure.
(v) Estimate on the structure (r) using the coupling relation on Γi .
(vi) Null controllability with a ficiticious control on the divergence
because of the local term on the pressure with a regularity result on this
control.
(vii) Elimination of the ficticious control thanks to the regularity of this
control.
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Feedback boundary stabilization of the 3-d Navier Stokes equation

Unstable solution of stationary Navier-Stokes equation (w , ξ).

−ν∆w + (w .∇)w +∇ξ = f in Ω,

divw = 0,

w = u∞s on Γ.

Now (z , q) = (w + y , ξ + p) is solution of the Navier-Stokes equations
with initial value w + y0 (and suitable boundary conditions including a
control) if

∂y

∂t
− ν∆y + (y .∇)w + (w .∇)y + (y .∇)y +∇p = 0 in Ω,

div y = 0,

y = Mu on Γ,

y(0) = y0.
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One wants to find the control u in the form of a feedback located on a
part of Γ so that the system is stable (exponentially stable ...) for y0

small enough.
Strategy : obtain a feedback for the linearized problem and use it for the
nonlinear one.
Linearized problem :

∂y

∂t
− ν∆y + (y .∇)w + (w .∇)y +∇p = 0 in Ω,

div y = 0,

y = Mu on Γ,

y(0) = y0.
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Rewrite the system using the Leray projector P

Ay = νP∆y − P(y .∇)w − P(w .∇)y , A0y = νP∆y ,

BMu = (λ0I − A)PDAMu,

DA : Dirichlet operator associated withA, λ0 in the resolvent set ofA

Mu = m.u − m∫
Γ
m

(

∫
Γ

m(u.n))n

with
m = 1 on Γ0, m = 0 on Γ \ Γc , Γ0 ⊂ Γc ⊂ Γ.

Py ′ = APy + BMu.

Write Py = y for simplicity.
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Method :
Auxiliary optimal control problem

inf{I (, y , u), u ∈ L2(V 0)}, y ′ = Ay + BMu, y(0) = y0},

where

I (y , u) =
1

2

∫ +∞

0

∫
Ω

|(−A0)−
1
2 y |2dxdt +

1

2

∫ +∞

0

|u(t)|2V 0(Γ)dt.

There exists an operator Π (in suitable spaces) such that the optimal
control satisfies

Π∗ = Π, u = MB∗Πy

and Π is solution of the algebraic Riccati equation

A∗Π + ΠA− ΠBM2B∗Π + (−A0)−1 = 0

and this feedback stabilizes exponentially the problem.
This is done for initial data satisfying compatibility conditions.
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For weaker initial data which do not satisfy compatibility conditions, JPR
uses a cut-off θ(t) on an interval (0, t0) and the feedback operator
depends on time on this interval and then satifies the algebraic Riccati
equation for t ≥ t0.
After that, the nonlinear problem is treated like the linear problem with a
source term and the feedback for the linear problem (with source term) is
applied to obtain the exponential stability.
This work requires a very fine and precise analysis on the regularity of the
solutions. It gives a completely correct answer to this question of
stabilization for the Navier-Stokes system. This question has been
treated by other authors, but....not in a completely correct way....
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Jean-Pierre,

Welcome to the club.

You will enjoy something fantastic....
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Freedom !!
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