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A model for heat conducting fluid Model Description

Boussinesq System

Model : Heat conducting incompressible fluid in

Ω, a two dimensional polygonal domain.

Fluid enters through one side and flows out through opposite side.

Rest of the boundary is a wall, thermally insulated.

Governing equations, Boussinesq system

with mixed boundary conditions of Dirichlet and Neumann type

describes

evolution of velocity, pressure, temperature of the fluid,
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A model for heat conducting fluid Model Description

Boussinesq System

Aim :

To stabilize the flow around an unstable steady state of the system,
controlling velocity and temperature of the fluid at the inflow
boundary, Γc.

To get the boundary control in feedback form in a suitable finite
dimensional space.

To implement it numerically .
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A model for heat conducting fluid Model Description

Physical set up
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A model for heat conducting fluid Mathematical framework

Mathematical set up

Stationary state temperature, velocity and pressure (τs,ws, qs) satisfies





−κ∆τs + ws.∇τs = gs in Ω,

τs = 0 on Γc,
∂τs
∂n

= 0 on Γ \ Γc,

(ws.∇)ws − div(ν(∇ws + (∇ws)
T )− qsI) = β τs,

divws = 0 in Ω; ws = 0 on Γw,

ws = zs on Γc , (ν(∇ws + (∇ws)
T )− qsI) n = 0 on Γn,

(1)
Denote Cauchy stress tensor as

σ(w, q) = ν(∇w + (∇w)T )− qI.

Stabilization 17th September, 2019 7 / 26



A model for heat conducting fluid Mathematical framework

Controlled evolution equation

The flow near the steady state describes the evolution of (τ,u, p),
the deviation from the steady state. This controlled system, with boundary
controls τc,uc is





∂τ

∂t
− κ∆τ + ws · ∇τ + u · ∇τs + u · ∇τ = 0 in Q, τ(0) = τ0 in Ω,

τ = τc on Γc,
∂τ

∂n
= 0 on Γ \ Γc,

∂u

∂t
− div σ(u, p) + (ws.∇)u + (u.∇)ws + (u.∇)u = β τ,

divu = 0, in Q, u = uc on Γc,

u = 0 on Γw, σ(u, p)n = 0 on Γn, u(0) = u0 in Ω,
(2)

Stabilization 17th September, 2019 8 / 26



A model for heat conducting fluid Mathematical framework

Earlier Results

Nguyen and Raymond (2015) : Boundary Stabilisation of
Navier-Stokes Equations.
Mixed boundary conditions, with Dirichlet-Neumann junction angle
less than or equal to π

2 .

Solution in H3/2+δ.

John Burns, X. He , Weiwei Hu. (2016) : Feedback stabilization of a
thermal fluid system with mixed boundary control.
Model for Energy efficient buildings
Dirichlet-Neumann junction angle less than or equal to π but they
used the results from the above paper.
Treatment of Dirichlet boundary conditions by approximations
through Robin type boundary conditions.
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A model for heat conducting fluid Main Issues

Main issues

Aim :
For a given ω > 0, find finite dimensional boundary controls for
temperature and velocity (τc,uc) in feedback form, such that the solution
decays at the rate of e−ωt.

Main Issues:

Loss of regularity for solutions of elliptic equations in polygonal
domain with mixed boundary conditions

A suitable function space to define the Boussinesq operator and to
tackle the nonlinearity

Stabilizability of the Boussinesq system under mixed boundary
conditions

Construction of finite dimensional feedback controls on the boundary
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Solution Procedure Loss of regularity

Loss of regularity for the solution

For Boussinesq system with mixed boundary conditions, if compatibility
conditions hold at junction points :

(u, τ) ∈ H2
δ(Ω)×H2

δ (Ω), ∀ 1/2 < δ < 1.

Use the imbedding Hs
δ ⊂ Hs−δ, ∀ 0 ≤ δ ≤ s.

Conclude that the solution

(u, τ) ∈ H3/2−δ ×H3/2−δ, ∀ 0 < δ < 1/2.

Boussinesq system with nonhomogeneous boundary conditions : If

(uc, τc) ∈ H
1/2
00 (Γc)×H1/2

00 (Γc),

then solution (u, τ) ∈ H3/2−δ ×H3/2−δ for 0 < δ < 1/2.
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Solution Procedure Loss of regularity

Consequences and Solution Procedures

Normal trace in negative Sobolev spaces only.

Define suitably using variational formulation the operator (A,D(A)).

D(A) ={(θ,v) ∈ H1
Γc

(Ω)×V1
Γd

(Ω) : (ξ, φ) 7→ a((θ,v), (ξ, φ))

is Z continuous},

Z = L2(Ω)×V0
n,Γd

(Ω) and

∀ (θ,v) ∈ D(A), (ξ, φ) ∈ H1
Γc

(Ω)×V1
Γd

(Ω),

〈(λ0I −A)(θ,v), (ξ, φ)〉Z = a((θ,v), (ξ, φ)).

Deduce Operator formulation of the control problem

Y′ = (A+ ωI)Y +Bv.
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Solution Procedure Loss of regularity

Consequences and Solution Procedures

Use appropriate weighted function spaces to get Green’s formula
adapted to polygonal domains

Identify of the adjoint operators

Check Hautus condition for stabilizability for Boussinesq system with
mixed boundary conditions

Identify a suitable finite dimensional function space on the boundary
for defining boundary control

Usual estimates to treat the nonlinear term not applicable

Adapt them suitably after Identifying the function space to set up a
fixed point iteration

Get the solution of the nonlinear closed loop system with feedback
boundary control.
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Solution Procedure Operator Formulation

Operator formulation of control problem

The problem : To stabilize the system

Y′ = (A+ ωI)Y +Bv.

in L2(Ω)×V0
n,Γd

(Ω) with decay rate ω > 0 using a finite dimensional
feedback control.

Find Nω ∈ N∗ such that

.... < ReλNω+1 < −ω < ReλNω ≤ ReλNω−1 ≤ .... ≤ Reλ1,

where λj are the eigenvalues of A, repeated according to their multiplicity.
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Solution Procedure Finite dimensional Control Construction

Construction of the Control

Seek a finite dimensional control in the form

τc(x, t) =

N∑

i=1

fi(t)g
i
θ(x), uc(x, t) =

N∑

i=1

fi(t)g
i
v(x), (3)

for giθ and gi
v localized in Γc and fi are scalar functions.

Choice of the family gi(x)

Introduce the space (E∗(λj))1≤j≤Nω = unstable eigenspaces of A
Define a subspace of L2(0, T ;L2(Γc)× L2(Γc)),

U0 = ∪Nω
j=1(ReB∗E∗(λj) ∪ ImB∗E∗(λj)),

Take for some N , {g̃1, g̃2, ..., g̃N} as a basis of U0

Take gi = m(giτ ,g
i
v), for m, smooth function with compact support

in Γc.
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Solution Procedure Finite dimensional Control Construction

Construction of the Control

Define the operator B ∈ L(RN , (D(A∗))′):

Bv =

N∑

i=1

viBgi.

The system now is
Y′ = AY + Bv.

For this choice of actuators, show that the system is stabilizable by
checking Hautus condition.
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Solution Procedure Finite dimensional Control Construction

Construction of the Control

Project the system onto unstable subspace and stable subspace.

For the finite dimensional system projected onto unstable subspace,
find the feedback control by solving a finite dimensional Riccati
equation

The operator K = −B∗P from Z to Rn, provides a stabilizing
feedback for (A+ ωI,B).

This feedback control stabilizes the full linear system
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Solution Procedure Stabilization of nonlinear system

Regularity of the solutions

Regularity result for the closed loop linearized system with source terms:

If the initial condition (θ0,v0) ∈ Hε(Ω)×Vε
n,Γd

(Ω) and

the source term (f1, f2) ∈ L2(0,∞;H−1+ε
Γc

(Ω))× L2(0,∞;H−1+ε
Γd

(Ω)),

then the solution (θ,v) has two parts:

one belonging to L2(0,∞; D((λ0I −A)
1
2

+ ε
2 )) ∩H 1

2
+ ε

2 (0,∞; Z)
corresponding to the initial condition and

the other part to H1(0,∞;H
3
2
−ε(Ω)×H

3
2
−ε(Ω)), corresponding to

the finite dimensional feedback control.

Stabilization 17th September, 2019 18 / 26



Solution Procedure Stabilization of nonlinear system

Stabilization of the Nonlinear system

Theorem

Let ε ∈ (0, 1/2). For a given ω > 0, there exist

a finite family of actuators, gi = (gθ,i,gv,i) ∈ H3/2
00 (Γc)×H

3/2
00 (Γc)

and positive constants µ0, C0

such that if (θ0,v0) ∈ Hε(Ω)×Vε
n,Γd

(Ω), µ ∈ (0, µ0) with

||(θ0,v0)||Hε(Ω)×Vε
n,Γd

(Ω) ≤ C0µ,

then the closed loop system admits a unique solution in the ball
Bµ =

{
(θ, v) ∈ X : ||eωt(θ,v)||X ≤ µ

}
. Also the solution satisfies:

‖(θ(t),v(t))‖Hε(Ω)×Hε(Ω) ≤ Ce−ωt,

where C depends on ‖θ0‖Hε(Ω) and ‖v0‖Hε(Ω).
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Numerical implementation Choice of parameters

Numerical data

The heat source function

φs(x, y) = 7 sin(2πx) cos(2πy)

The controlled velocity and temperature profiles in the inflow boundary Γin

(uc, τc) =

2∑

j=1

fj(g
j
v, g

j
θ),

with
(g1
v, g

1
θ) = ((α(y), 0), 0), (g2

v, g
2
θ) = ((0, 0), β(y)).

The quantities (f1, f2) are the control variables to be calculated and we
take

α(y) = exp

(
− 0.0001

[(0.7− y)(0.9− y)]2

)
, β(y) = 0.2α(y)
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Numerical implementation Choice of parameters

Control functions g

Weiwei Hu Chapter 5. Numerical Results 83

control, i.e.

uv(y, t) = (bv|�I
)(y)uw(t) =

⇥
e
� 0.0001

[(0.7�y)(0.9�y)]2 , 0
⇤T

uw(t).

Furthermore, we apply one control for the inflow temperature on the inlet �I and the radiant
heating strip �H, respectively, of the forms

u✓I(y, t) = (b✓I |�I
)(y)uTI

(t) = (0.2e
�0.00001

[(0.7�y)(0.9�y)]2 )uTI
(t),

and

u✓H(x, t) = (b✓H |�H
)(x)uTH

(t) = (0.4e
�0.00001

[(0.4�x)(0.6�x)]2 )uTH
(t).

These shape functions were selected to reflect the expected parabolic profile of an inlet flow
and a smooth approximation of a uniform temperature profile as shown in Figure 5.3. We
also verified that

hbv, Re 1,w1i�I
6= 0, hb✓I , Re 1,T i�I

6= 0, hb✓H , Re�1,T i�H
6= 0,

and

hbv, Im 1,w1i�I
6= 0, hb✓I , Im 1,T i�I

6= 0, hb✓H , Im�1,T i�H
6= 0.

Therefore, rank(Wj) = 1, for j = 1, 2 and hence the linearized system is stabilizable by the
selected functions.
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Figure 5.3: Control input functions

Observe that in this simple example we have three control inputs, i.e. U = R3, and with
these three control inputs (Ah

" ,B
h) is exactly controllable. Correspondingly, the feedback

operator has nine functional gains

uh
w(t) = �

Z

⌦

kh
w1

(⇠)wh
1 (t)d⇠ �

Z

⌦

kh
w2

(⇠)wh
2 (t)d⇠ �

Z

⌦

kh
wT (⇠)T h(t)d⇠,

uh
TI

(t) = �
Z

⌦

kh
TI1

(⇠)wh
1 (t)d⇠ �

Z

⌦

kh
TI2

(⇠)wh
2 (t)d⇠ �

Z

⌦

kh
TIT

(⇠)T h(t)d⇠,

uh
TH

(t) = �
Z

⌦

kh
TH1

(⇠)wh
1 (t)d⇠ �

Z

⌦

kh
TH2

(⇠)wh
2 (t)d⇠ �

Z

⌦

kh
THT (⇠)T h(t)d⇠.
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Numerical implementation Numerical Results

Eigenvalues of the linearized Boussinesq operator at
Reynold’s number 100
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Numerical implementation Numerical Results

Evolution of velocity perturbation energies on log10 scale
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Numerical implementation Numerical Results

Evolution of temperature perturbation energies on log10

scale
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Numerical implementation Numerical Results

Conclusions

Linearized the system around a steady state with mixed boundary
conditions,

Determined the loss of regularity of the solutions.

Using suitable weighted Sobolev spaces, proved Green’s formula and
calculated adjoint operators

Proved stabilizability of the linearized system by showing Hautus
condition holds

Computed a finite dimensional feedback boundary control by solving a
finite dimensional algebraic Riccati equation

Using this study, proved local stabilization of the nonlinear system

Numerically implemented the procedure to verify exponential
stabilization
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Numerical implementation Numerical Results
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Numerical implementation Numerical Results

All our best wishes Jean-Pierre!
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