Conference on "Control and Stabilization issues for PDE" Toulouse 16-18th September, 2019

Thermal fluid Stabilization

Mythily Ramaswamy Chennai Mathematical Institute, Chennai, India

Collaborators:

Jean-Pierre Raymond (IMT, Toulouse), Arnab Roy (Post-Doc, INRIA Nancy, France)

```
Praveen C (TIFR CAM) ,
Ruchi Sandilya. (Weistrass Institute, Berlin).
```

Financial Support :

Indo-French Center for Applied Mathematics, AIRBUS Corporate Foundation Chair Fund at TIFR CAM

< □ > < □ > < □ > < □ > < □ > < □ >

contents

A model for heat conducting fluid

- Model Description
- Mathematical framework
- Main Issues

Solution Procedure

- Loss of regularity
- Operator Formulation
- Finite dimensional Control Construction
- Stabilization of nonlinear system

3 Numerical implementation

- Choice of parameters
- Numerical Results

Boussinesq System

- Model : Heat conducting incompressible fluid in
- $\Omega_{\rm r}$ a two dimensional polygonal domain.
 - Fluid enters through one side and flows out through opposite side.
 - Rest of the boundary is a wall, thermally insulated.
- Governing equations, Boussinesq system
- with mixed boundary conditions of Dirichlet and Neumann type describes
- evolution of velocity, pressure, temperature of the fluid,

< □ > < □ > < □ > < □ > < □ > < □ >

Boussinesq System

Aim :

- To stabilize the flow around an unstable steady state of the system, controlling velocity and temperature of the fluid at the inflow boundary, Γ_c .
- To get the boundary control in feedback form in a suitable finite dimensional space.
- To implement it numerically .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Model Description

Physical set up

æ

Mathematical set up

Stationary state temperature, velocity and pressure $(au_s, \mathbf{w}_s, q_s)$ satisfies

$$\begin{cases} -\kappa \Delta \tau_s + \mathbf{w}_s . \nabla \tau_s = g_s \text{ in } \Omega, \\ \tau_s = 0 \text{ on } \Gamma_c, \quad \frac{\partial \tau_s}{\partial n} = 0 \text{ on } \Gamma \setminus \Gamma_c, \\ (\mathbf{w}_s . \nabla) \mathbf{w}_s - \operatorname{div}(\nu (\nabla \mathbf{w}_s + (\nabla \mathbf{w}_s)^T) - q_s I) = \beta \tau_s, \\ \operatorname{div} \mathbf{w}_s = 0 \text{ in } \Omega; \quad \mathbf{w}_s = 0 \text{ on } \Gamma_w, \\ \mathbf{w}_s = \mathbf{z}_s \text{ on } \Gamma_c, \quad (\nu (\nabla \mathbf{w}_s + (\nabla \mathbf{w}_s)^T) - q_s I) n = 0 \text{ on } \Gamma_n, \end{cases}$$
(1)

Denote Cauchy stress tensor as

(

$$\sigma(\mathbf{w}, q) = \nu(\nabla \mathbf{w} + (\nabla \mathbf{w})^T) - qI.$$

Controlled evolution equation

The flow near the steady state describes the evolution of (τ, \mathbf{u}, p) , the deviation from the steady state. This controlled system, with boundary controls τ_c, \mathbf{u}_c is

$$\begin{cases} \frac{\partial \tau}{\partial t} - \kappa \Delta \tau + \mathbf{w}_s \cdot \nabla \tau + \mathbf{u} \cdot \nabla \tau_s + \mathbf{u} \cdot \nabla \tau = 0 \text{ in } Q, \quad \tau(0) = \tau_0 \\ \tau = \tau_c \text{ on } \Gamma_c, \frac{\partial \tau}{\partial n} = 0 \text{ on } \Gamma \setminus \Gamma_c, \\ \frac{\partial \mathbf{u}}{\partial t} - \operatorname{div} \sigma(\mathbf{u}, p) + (\mathbf{w}_s \cdot \nabla) \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{w}_s + (\mathbf{u} \cdot \nabla) \mathbf{u} = \beta \tau, \\ \operatorname{div} \mathbf{u} = 0, \text{ in } Q, \quad \mathbf{u} = \mathbf{u}_c \text{ on } \Gamma_c, \\ \mathbf{u} = 0 \text{ on } \Gamma_w, \quad \sigma(\mathbf{u}, p) \mathbf{n} = 0 \text{ on } \Gamma_n, \quad \mathbf{u}(0) = \mathbf{u}_0 \text{ in } \Omega, \end{cases}$$
(2)

(I) < (II) <

Earlier Results

- Nguyen and Raymond (2015) : Boundary Stabilisation of Navier-Stokes Equations.
 Mixed boundary conditions, with Dirichlet-Neumann junction angle less than or equal to π/2.
 Solution in H^{3/2+δ}.
- John Burns, X. He, Weiwei Hu. (2016) : Feedback stabilization of a thermal fluid system with mixed boundary control. Model for Energy efficient buildings Dirichlet-Neumann junction angle less than or equal to π but they used the results from the above paper. Treatment of Dirichlet boundary conditions by approximations through Robin type boundary conditions.

イロト 不得 トイラト イラト 一日

Main issues

Aim :

For a given $\omega > 0$, find finite dimensional boundary controls for temperature and velocity $(\tau_c, \mathbf{u_c})$ in feedback form, such that the solution decays at the rate of $e^{-\omega t}$.

Main Issues:

- Loss of regularity for solutions of elliptic equations in polygonal domain with mixed boundary conditions
- A suitable function space to define the Boussinesq operator and to tackle the nonlinearity
- Stabilizability of the Boussinesq system under mixed boundary conditions
- Construction of finite dimensional feedback controls on the boundary

イロト 不得 トイヨト イヨト 二日

Loss of regularity for the solution

For Boussinesq system with mixed boundary conditions, if compatibility conditions hold at junction points :

$$(\mathbf{u}, \tau) \in \mathbf{H}^2_{\delta}(\Omega) \times H^2_{\delta}(\Omega), \forall 1/2 < \delta < 1.$$

Use the imbedding $H^s_{\delta} \subset H^{s-\delta}, \ \forall \quad 0 \leq \delta \leq s.$

Conclude that the solution

$$(\mathbf{u}, \tau) \in \mathbf{H}^{3/2-\delta} \times H^{3/2-\delta}, \forall \quad 0 < \delta < 1/2.$$

Boussinesq system with nonhomogeneous boundary conditions : If

$$(\mathbf{u}_{\mathbf{c}},\tau_c) \in \mathbf{H}_{00}^{1/2}(\Gamma_c) \times H_{00}^{1/2}(\Gamma_c),$$

then solution $(\mathbf{u},\tau)\in\mathbf{H}^{3/2-\delta}\times H^{3/2-\delta}$ for $0<\delta<1/2.$

▲□▶▲□▶▲∃▶▲∃▶ ∃ のの⊙

Consequences and Solution Procedures

- Normal trace in negative Sobolev spaces only.
- Define suitably using variational formulation the operator (A, D(A)).

$$\begin{split} D(\mathcal{A}) = & \{ (\theta, \mathbf{v}) \in H^1_{\Gamma_c}(\Omega) \times \mathbf{V}^1_{\Gamma_d}(\Omega) : (\xi, \phi) \mapsto a((\theta, \mathbf{v}), (\xi, \phi)) \\ & \text{ is } Z \text{ continuous} \}, \end{split}$$

$$\begin{split} Z &= L^2(\Omega) \times \mathbf{V}^0_{n,\Gamma_d}(\Omega) \text{ and} \\ \forall \left(\theta, \mathbf{v}\right) \in D(\mathcal{A}), \, (\xi,\phi) \in H^1_{\Gamma_c}(\Omega) \times \mathbf{V}^1_{\Gamma_d}(\Omega), \\ & \left\langle (\lambda_0 I - \mathcal{A})(\theta, \mathbf{v}), (\xi,\phi) \right\rangle_Z = a((\theta, \mathbf{v}), (\xi,\phi)). \end{split}$$

• Deduce Operator formulation of the control problem

$$\mathbf{Y}' = (\mathcal{A} + \omega I)\mathbf{Y} + Bv.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Consequences and Solution Procedures

- Use appropriate weighted function spaces to get Green's formula adapted to polygonal domains
- Identify of the adjoint operators
- Check Hautus condition for stabilizability for Boussinesq system with mixed boundary conditions
- Identify a suitable finite dimensional function space on the boundary for defining boundary control
- Usual estimates to treat the nonlinear term not applicable
- Adapt them suitably after Identifying the function space to set up a fixed point iteration
- Get the solution of the nonlinear closed loop system with feedback boundary control.

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

Operator formulation of control problem

The problem : To stabilize the system

$$\mathbf{Y}' = (\mathcal{A} + \omega I)\mathbf{Y} + Bv.$$

in $L^2(\Omega) \times \mathbf{V}^0_{n,\Gamma_d}(\Omega)$ with decay rate $\omega > 0$ using a finite dimensional feedback control.

Find $N_\omega \in \mathbb{N}^*$ such that

$$\dots < Re\lambda_{N_{\omega}+1} < -\omega < Re\lambda_{N_{\omega}} \le Re\lambda_{N_{\omega}-1} \le \dots \le Re\lambda_{1},$$

where λ_i are the eigenvalues of \mathcal{A} , repeated according to their multiplicity.

イロト 不得 トイヨト イヨト 二日

Construction of the Control

Seek a finite dimensional control in the form

$$\tau_{c}(x,t) = \sum_{i=1}^{N} f_{i}(t)g_{\theta}^{i}(x), \quad \mathbf{u}_{c}(x,t) = \sum_{i=1}^{N} f_{i}(t)\mathbf{g}_{\mathbf{v}}^{i}(x), \quad (3)$$

for g_{θ}^{i} and $\mathbf{g}_{\mathbf{v}}^{\mathbf{i}}$ localized in Γ_{c} and f_{i} are scalar functions.

Choice of the family $\mathbf{g}_i(x)$

- Introduce the space $(E^*(\lambda_j))_{1 \leq j \leq N_\omega}$ = unstable eigenspaces of $\mathcal A$
- Define a subspace of $L^2(0,T;L^2(\Gamma_c)\times \mathbf{L}^2(\Gamma_c))$,

$$U_0 = \bigcup_{j=1}^{N_\omega} (\operatorname{Re} B^* E^*(\lambda_j) \cup \operatorname{Im} B^* E^*(\lambda_j)),$$

- Take for some $N,\,\{\tilde{\mathbf{g}}_1,\tilde{\mathbf{g}}_2,...,\tilde{\mathbf{g}}_N\}$ as a basis of U_0
- Take $\mathbf{g}_i = m(g^i_{\tau}, \mathbf{g}^i_{\mathbf{v}})$, for m, smooth function with compact support in Γ_c .

Construction of the Control

• Define the operator $\mathcal{B} \in \mathcal{L}(\mathbb{R}^N, (D(\mathcal{A}^*))')$:

$$\mathcal{B}v = \sum_{i=1}^{N} v_i B \mathbf{g}_i.$$

• The system now is

$$\mathbf{Y}' = \mathcal{A}\mathbf{Y} + \mathcal{B}v.$$

• For this choice of actuators, show that the system is stabilizable by checking Hautus condition.

Construction of the Control

- Project the system onto unstable subspace and stable subspace.
- For the finite dimensional system projected onto unstable subspace, find the feedback control by solving a finite dimensional Riccati equation
- The operator $\mathcal{K} = -\mathcal{B}^*\mathcal{P}$ from Z to \mathbb{R}^n , provides a stabilizing feedback for $(\mathcal{A} + \omega I, \mathcal{B})$.
- This feedback control stabilizes the full linear system

ヘロト 人間ト ヘヨト ヘヨト

Regularity of the solutions

Regularity result for the closed loop linearized system with source terms:

If the initial condition $(\theta_0, \mathbf{v}_0) \in H^{\varepsilon}(\Omega) \times \mathbf{V}_{n, \Gamma_d}^{\varepsilon}(\Omega)$ and

the source term $(f_1, \mathbf{f}_2) \in L^2(0, \infty; H^{-1+\varepsilon}_{\Gamma_c}(\Omega)) \times L^2(0, \infty; \mathbf{H}^{-1+\varepsilon}_{\Gamma_d}(\Omega))$,

then the solution (θ, \mathbf{v}) has two parts:

- one belonging to $L^2(0,\infty; D((\lambda_0 I \mathcal{A})^{\frac{1}{2} + \frac{\varepsilon}{2}})) \cap H^{\frac{1}{2} + \frac{\varepsilon}{2}}(0,\infty; Z)$ corresponding to the initial condition and
- the other part to $H^1(0,\infty; H^{\frac{3}{2}-\varepsilon}(\Omega) \times \mathbf{H}^{\frac{3}{2}-\varepsilon}(\Omega))$, corresponding to the finite dimensional feedback control.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Stabilization of the Nonlinear system

Theorem

Let $\varepsilon \in (0, 1/2)$. For a given $\omega > 0$, there exist

- a finite family of actuators, $\mathbf{g}_i = (g_{ heta,i}, \mathbf{g}_{\mathbf{v},i}) \in H^{3/2}_{00}(\Gamma_c) imes \mathbf{H}^{3/2}_{00}(\Gamma_c)$
- and positive constants μ_0, C_0

such that if $(\theta_0, \mathbf{v}_0) \in H^{\varepsilon}(\Omega) \times \mathbf{V}^{\varepsilon}_{n, \Gamma_d}(\Omega)$, $\mu \in (0, \mu_0)$ with

$$||(\theta_0, \mathbf{v}_0)||_{H^{\varepsilon}(\Omega) \times \mathbf{V}_{n, \Gamma_d}^{\varepsilon}(\Omega)} \le C_0 \mu,$$

then the closed loop system admits a unique solution in the ball $B_{\mu} = \{(\theta, \mathbf{v}) \in X : ||e^{\omega t}(\theta, \mathbf{v})||_X \leq \mu\}.$ Also the solution satisfies:

$$\|(\theta(t), \mathbf{v}(t))\|_{H^{\varepsilon}(\Omega) \times \mathbf{H}^{\varepsilon}(\Omega)} \le C e^{-\omega t},$$

where C depends on $\|\theta_0\|_{H^{\varepsilon}(\Omega)}$ and $\|\mathbf{v}_0\|_{\mathbf{H}^{\varepsilon}(\Omega)}$.

Stabilization

< ∃ ▶

Numerical data

The heat source function

$$\phi_s(x,y) = 7\sin(2\pi x)\cos(2\pi y)$$

The controlled velocity and temperature profiles in the inflow boundary Γ_{in}

$$(\mathbf{u}_c, \tau_c) = \sum_{j=1}^2 f_j(\mathbf{g}_v^j, g_\theta^j),$$

with

$$(\mathbf{g}_v^1, g_\theta^1) = ((\alpha(y), 0), 0), \quad (\mathbf{g}_v^2, g_\theta^2) = ((0, 0), \beta(y)).$$

The quantities $\left(f_{1},f_{2}\right)$ are the control variables to be calculated and we take

$$\alpha(y) = \exp\left(-\frac{0.0001}{[(0.7 - y)(0.9 - y)]^2}\right), \quad \beta(y) = 0.2\alpha(y)$$

Stabilization

Control functions g

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Numerical implementation

Numerical Results

Eigenvalues of the linearized Boussinesq operator at Reynold's number $100\,$

э

Numerical implementation

Numerical Results

Evolution of velocity perturbation energies on log_{10} scale

Stabilization

э

(3)

< 47 ▶

Numerical implementation Numerical Results

Evolution of temperature perturbation energies on \log_{10} scale

Stabilization

Conclusions

- Linearized the system around a steady state with mixed boundary conditions,
- Determined the loss of regularity of the solutions.
- Using suitable weighted Sobolev spaces, proved Green's formula and calculated adjoint operators
- Proved stabilizability of the linearized system by showing Hautus condition holds
- Computed a finite dimensional feedback boundary control by solving a finite dimensional algebraic Riccati equation
- Using this study, proved local stabilization of the nonlinear system
- Numerically implemented the procedure to verify exponential stabilization

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

- A. Bensoussan, G. Da Prato, M. Delfour, S. K. Mitter, Representation and control of infinite dimensional systems. Second edition. Systems and Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 2007.
- M. Ramaswamy, J-P Raymond, Arnab Roy, Boundary Feedback Stabilization of the Boussinesq system with mixed boundary conditions, Jl. Differential Equations. 266, (2019), 4268-4304.
- C. Praveen, M. Ramaswamy, J-P Raymond, R. Sandilya, Numerical Stabilization of the Boussinesq System, Preprint.
 - Mazya, Rossmann, Elliptic boundary value problems in polyhedral domains, Mathematical Surveys and Monographs, Vol 162, AMS, 2010.

< □ > < 同 > < 三 > < 三 >

All our best wishes Jean-Pierre!

2

イロト イヨト イヨト イヨト