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Application to Calculus of Variations:
Optimal Design Problem (ODP):
Control : Characteristic function: χωA

State equation:
uωA
∈ H1

0 (Ω)

− div (AωA
∇uwA

) = g ∈ H−1(Ω)

where AωA
= a1χωA

+ a2(1− χωA
).

Cost functional :

J(χωA
) :=

∫
Ω

AωA
(x)∇uωA

· ∇uωA
dx =

∫
Ω

guωA
dx .

Minimization problem:

inf {J(χωA
); |ωA| = δA|Ω|}



Examples of complex media/microstructures (Mixing process):
Laminates, Periodic structures, Hashin-Shtrikman structures, etc.
with two phases:

Aε(x) = a1χωAε
(x) + a2 (1− χωAε

(x))

In pictures, we can easily see the set ωAε and its complement.
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Minimization over characteristic functions.
Difficulties:Non-existence of minimizers,
lack of convexity,
not-so-rich variations among characteristic functions to deduce
optimality conditions. (e-g:Hadamard variations).
Remedy:Relaxation.
Roughly speaking, add limit points of all minimizing sequences.
In our model ODP, this requires H-limits and the resolution of the
G-closure problem.
Fortunately, both issues are solved for two-phase media.
Minimizers to ODP are found among N−rank laminates.



RELAXATION.

inf {F0(x0); x0 ∈ X0} → inf {F (x); x ∈ X}

Conditions on the Relaxed Problem:
(a) X is compact
(b) F : X → R is lower semi continuous
(c) X0 is dense in X
(d) F |X0= F0

(e) For each x ∈ X , there exists {x (n)
0 } ⊂ X0 such that

x
(n)
0 → x in X , lim inf F0(x

(n)
0 ) = F (x)

Consequences. Relaxed problem has at least one solution. Limit
point of any minimizing sequence is a solution. Further, minimum
values are the same. Solution of the original problem, if any, is a
solution to the relaxed problem.



Local volume proportion of components {a1, a2} in a mixture is
{θA, 1− θA} where

ωAε(x) ⇀ θA(x) in L∞(Ω) weak*

ωεA → χωε
A

Notion of weak limit is adequate.



Heat Conductivity of a mixture:
Aε ⇀ A in L∞(Ω) weak*
This weak limit is not appropriate.

We need the notion of Homogenization, H-convergence,
H-limit:
We say that Aε is H−convergent to A?

Aε
H
⇀ A? if

Aε∇uε ⇀ A?∇u in L2(Ω) weak,

for all test sequences {uε} such that

uε ⇀ u weakly in L2(Ω),
∇uε ⇀ ∇u weakly in L2(Ω),

div (Aε∇uε) is strongly convergent in H−1(Ω).

(Oscillating system with differential constraints).



It follows that not only we have convergence of heat flux, but also
canonical energy densities converge:

Aε∇uε ⇀ A?∇u in L2(Ω)

Aε∇uε · ∇uε ⇀ A?∇u · ∇u in D ′(Ω).



About A∗:

A∗ is a macro quantity depending on conductivities of individual
components of the mixture,their volume proportions and more
importantly on the microstructure. We are interested in getting
estimates on A∗ independent of microstructures,using only macro
quantities.
A∗ is local quantity.



First Task: Compactness Theorem showing the existence of
mixtures:
Theorem: Given Aε, there is a subsequence which H-converges to
some A∗ which represents the mixture.

Compactness means some sort of stability. Secondly, H-limit of
Fourier materials is again Fourier. This means that the mixture is a
Fourier material. However, H-limit of isotropic materials need not
be isotropic.
These results provide confirmation of correctness of the topology
for the mixing process.



Second Task: Initial engineering problem is Optimal Design
according to specific criterion (modeled by ODP).Mathematicians
aimed at more ambitious goal of characterizing all possible designs
(called G-closure problem) and then ODP resolution amounts to
making a choice among them. The surprise is that the harder
problem of G-closure can be solved in certain cases.



Theorem (Murat-Tartar, Lurie-Cherkaev): Conductivities of
various mixtures that can be formed by varying microstructures are
characterized by a set of bounds/inequalities in the space of
conductivities. These define a convex lens shaped region. They are
optimal in the whole physical domain. Theorem also constructs
the microstructures/ mixing process corresponding to these
bounds. In other words, the result describes full details of all
possible materials obtained.

Once we have such a result, it is then easy to choose the desired
material behaviour via optimization.



Celebrated Theorem (Murat-Tartar, Lurie-Cherkaev)
H-limits A? are charcterized by the following inequalities:

A(x) ≤ A∗(x) ≤ A(x),

Tr{(A∗ − a1I )
−1} ≤ 1

NTr{(A− a1I )
−1}+ N−1

N Tr{(A− a1I )
−1}

Tr{(a2I − A∗)−1} ≤ 1
NTr{(a2I − A)−1}+ N−1

N Tr{(a2 − A)−1}

Here A and A are respectively arithmetic and harmonic means of
{Aε} :

Aε ⇀ A in L∞(Ω) weak ∗

(Aε)−1 ⇀ (A)−1 in L∞(Ω) weak ∗



Above bounds are in terms of eigenvalues of A? which represent
conductivity of the mixture in the eigenvector directions. They are
optimal in the following sense : Any A? satisfying above bounds
is a H-limit of two-phase mixtures with some microstructures.

Phase diagram in the space of macro parameters A? is depicted in
the following picture: convex lens shaped region.



;
It shows not only various A? that can be obtained but also the
underlying microstructure/mixing process.



Mathematical ideas behind proving these results:
Div-Curl Lemma, Compensated Compactness,H-measures, Wave
cone etc.



At a fundamental level, the central problem of Homogenization is
to find the (weak) limit of quadratic quantities of oscillating
sequences satisfying certain differential constraints.In fact, the very
definition of the homogenized matrix is based on the following
framework:
Gradient of the temperature field oscillate satisfying differential
constraint defined by balance equations.Also curl-free condition.
The corresponding energy density is a quadratic quantity
incorporating the interaction between the heat flux and the
gradient of the temperature field. We are interested in the (weak)
limit of this quantity and the homogenized matrix appears in the
limiting energy density.



Thus we consider an oscillating sequence (with zero mean)
satisfying certain differential constraints.We view them as
waves.They have well-defined location in the physical space and
well-defined directions of propagation and also well-defined
amplitudes. Such bad amplitudes constitute the wave cone of
the system. Squaring these amplitudes, we get the intensity of
these waves.
The significance is that using the above ingredients, we can
constuct waves whose presence is an obstruction to the
compactness (strong convergence, stability) of the sequence.



H-measure, denoted by µ is a measure on the phase
space,associated to such an oscillating sequence.It is a weak limit
constructed from all the above pointwise ingredients. It quantifies
the non-compactness of the given oscillating sequence.Indeed, if µ
is zero, then the sequence is compact (and conversely).



Relaxed ODP

Control : (θA,A
∗).

0 ≤ θA(x) ≤ 1,
1

|Ω|

∫
Ω

θA = δA

A∗(x) ∈ Mθ(x)x ∈ Ω

State Equation.
UθA ∈ H1

0 (Ω)

− div (A∗∇uθA) = g in Ω

Cost functional

J(θA,A
∗) =

∫
Ω

guθA

Minimization Problem

min {J(θA,A
∗); θA,A

∗}



Numerics of ODP: Exact optimum solution is of course a
genuine microstructure/composite. But in practice, we need a
two-phase material. (one of them is void in case of shape
optimization). Since ODP is a relaxed version of the corresponding
ODP with classical materials, there is one classical microstructure
lying near (w.r.t H-topology) our optimal relaxed microstructure
for which the objective functional value is close to the optimal
one.There are many techniques to implement this idea in Numerics.



;



;



Optimal Oscillation-Dissipation Problem (OODP):
Controls : Two characteristic functions: (χωA

, χωB
)

State equation:
uωA
∈ H1

0 (Ω)

− div (AωA
∇uwA

) = g ∈ H−1(Ω)

where AωA
= a1χωA

+ a2(1− χωA
) (with two phases).

Cost functional :

J(χωA
, χωB

) :=

∫
Ω

BωB
(x)∇uωA

· ∇uωA
dx .

with BωB
= b1χωB

+ b2(1− χωB
) (with two phases).

Minimization problem:

inf {J(χωA
, χωB

); |ωA| = δA|Ω|, |ωB | = δB |Ω|} .



Interpretation of Solution to OODP:

Basic idea is that the total energy of the oscillations after
appropriate dissipation in the whole domain is minimized.This is
captured by minimization wrt both (A,B) of the cost/objective
functional.
Let (A∗,B#) be optimal solution.
The minimizer (A∗,B#) is a macro representation of
Oscillation-Dissipation processes which co-exist in the system.



Why OODP is not trivial?

Ideally speaking, we would like to put minimum value of B in
regions of large gradient of the state u .The difficulty is that such
regions are not known apriori. It is part of the minimization
problem. Moreover, these regions can be large whereas minimum
value material of B can have small volume.
Secondly, there is an interaction between microstructures ωA, ωB .
Thirdly, when A =B, the OODP coincides with ODP and so
non-trivial.



As before, there are four tasks in the resolution of OODP.

1) New Notion of Convergence is required: Notion of convergence
relative to a microstructure:
2) Compactness Theorem
3) Optimal Bounds on emerging new Macro Parameters.
4) Computation of macro parameters on appropriate
microstructures to show all points of the phase diagram can be
reached via H-convergence & relative convergence.

Main feature of the problem which is present here but not in
previous ODP:Interaction between microstructures.



Notion of Convergence relative to a microstructure:

Aε,Bε are given.
We say {Bε} converges to B# relative to Aε if

Bε∇uε · ∇uε ⇀ B#∇u · ∇u in D ′(Ω),

for all test sequences {uε} such that

uε ⇀ u in H1(Ω) weak
− div (Aε∇uε) → H−1(Ω) strong.

Notation: Bε
Aε

⇀ B#.
B# is a new macro matrix apart from A∗.



Oscillating Test functions in Homogenization

χε
L2

⇀ ξ · x

∇χε L2

⇀ ξ ∈ IRN

div (Aε∇χε) H−1

−→

Define A∗ξ = weak limit of Aε∇χε



Adjoint oscillating Test functions for relative limits

ψε
L2

⇀ ψ

∇ψε L2

⇀ ∇ψ

div (Aε∇ψε − Bε∇χε) = 0

B# = A∗ψ − weaklimit {Aε∇ψε − Bε∇χε}



B# is an outcome of interaction between microstructures {Aε,Bε}.
The case Bε = Aε is called self-interacting case. In this case,
B# = A? and so there are no new macro parameters. This case
coincides with the previously treated case. Thus we are dealing
with a genuine extension of the old problem. In the extended
problem, there are new macro parameters B# apart from A?.

The two lower bounds (L1), (L2) reduce to the two known bounds
for A∗. The two upper bounds (U1), (U2) define certain regions in
the phase space of A∗ which are not of any importance.



New Results:

The original physical domain Omega is divided into four
sub-domains with interfaces between them. There are four optimal
regions in the phase space of macro parameters (A?,B#),
corresponding to four sub-domains.(See Picture). These four
regions are defined by four inequalities labeled as {L1, L2,U1,U2}.
Because of these structural changes, minimizers for OODP are
found among N-rank laminates with an interface across which
core-matrix values get switched.
In the classical case, there was only one region and consequently,
ODP solutions did not have interfaces.



θA < θB
θA + θB > 1

: (L1, U2)

θA < θB
θA + θB < 1

: (L1, U1)

θB < θA
θA + θB > 1

: (L2, U2)

θB < θA
θA + θB < 1

: (L2, U1)

Ω

Σ1

Σ2

;



Lower Trace Bound (L1)

There exists a unique θ(x) ≤ θA(x) such that

Tr(A?(x)− a1I )
−1 = Tr(Aθ(x)− a1I )

−1 +
θ(x)

(1− θ(x))a1

where Aθ(x) = {a1θ(x) + a2(1− θ(x))} I .
Then we have

Tr
{

(B#(x)− b1I )(Aθ(x)− a1I )
2(A?(x)− a1I )

−2
}

≥ N(b2 − b1)(1− θB(x) +
b1(a2 − a1)2

a2
1

θ(x)(1− θ(x)).

This is optimal in the sub-domain {x : θA(x) ≤ θB(x)}.



Upper Trace Bound (U1)

Tr
{(

b2
a1
A∗(x)− B#(x)

)
(Aθ(x)− a1I )

2(A∗(x)− a1I )
−2
}

≥ N(b2 − b1)θB(x) + N b2
a1

(a2 − a1)(1− θ(x)).

This is optimal in the sub-domain {x : θA(x) + θB(x) ≤ 1}.



For arbitrary structures, H-measure is the right tool. Differential
Relations with variable coefficients expressing compactness (so
crucial in the theory) can be equivalently transformed to algebraic
relations involving H-measures. In a sharp sophisticated way, the
above algebraic relation ensures the decay of short waves in the
system and thereby implies compactness. Such a sharp result is
needed to study interaction between two microstructures.



Remarks:

1. Shift the focus from Material Science to PDE A∗ can be seen as
a macro quantity parametrizing all weak limits of the oscillating
field (solution of PDE) as microstructure (variable coefficients)
varies. Similarly, B# is a macro quantity parametrizing all weak
limits of energy density of the oscillating field. For two-phased
media, characterization of A∗ is complete whereas characterization
of B# is not complete because we allow only special test matrices
B. Note that A∗ is a particular value of B#, but set of B#values
is much larger showing that oscillations of energy density is much
richer. This richness shows many more possible solutions to OCP,
whose objective functional is based on energy density.
2. In Homogeniztion Theory, one is interested in the weak limits of
quadratic functions. That is why, Compensated Compactness,
Defect measures, H-measures were introduced.But rough
coefficients pose a challenge. In the particular case of elliptic
equation, the difficulty is overcome.



3. Correctors in Homogenization: Idea is to obtain strong
convergence of the oscillating field by subtracting oscillations.In
doing so, there are hypotheses on underlying microstructures.There
is no optimal result for general microstructures. Our approach does
not seek strong convergence but weak limits and in doing so, we
find new macro parameters B#. Thanks to relative limits, we can
say strong convergence iff (Id)# = Id .



Remarks:
4. Minimization wrt B ensures minimum value of B at large values
of | grad u|2 and large value of B at small values of | grad u|2
Note large values of | grad u|2 occur only at interface between the
two-phases of A. Therefore minimizer B# tries to capture this
region (called Thermoclines). This gives potentially additional
information / observation / measurement about the optimal
A-microstructure which is not available in (ODP). In principle, this
macro information is useful in Inverse Problems involving
microstructures. In this context, recall that different
microstructures may give rise to the same A∗, but have different
B# for some B-microstructure.
5.In OCP, State equation and observations are different entities
and consequently the natural convergences for them are not the
same, but related. Natural topology for observation must be
adapted to that of the State. The same issue was also encountered
by Lions in his attempt to homogenize exact controllability
problem for the Wave Equation. However, he had additional
difficulties because the system was hyperbolic.



Remarks:

6. (OODP) reminds one of Phase Change Material (PCM) which
is used in latent heat energy storage and release, by means of
change in microstructure. Substance remains the same but there is
a phase change at the same temperature. This corresponds to
{A,B} with same values of conductivities, but with different
microstructures. Maximizing wrt B would amount to maximizing
latent heat energy by means of microstructures. Homogenized
(macro) temperature remains the same during B-optimization.
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