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Feedback boundary stabilization of the two-dimensional Navier--Stokes [PDF] siam.org
equations
JP Raymond - SIAM Journal on Control and Optimization, 2006 - SIAM

We study the exponential stabilization of the linearized Navier--Stokes equations around an
unstable stationary solution, by means of a feedback boundary control, in dimension 2 or 3.
The feedback law is determined by solving a linear-quadratic control problem. We do not ...

v WYY Citedby 171 Related articles All 9 versions

Hamiltonian Pontryagin's principles for control problems governed by semilinear [PDF] ensta-paris.fr
parabolic equations
JP Raymond, H Zidani - Applied Mathematics and Optimization, 1999 - Springer

In this paper we study optimal control problems governed by semilinear parabolic equations.
We obtain necessary optimality conditions in the form of an exact Pontryagin's minimum
principle for distributed and boundary controls (which can be unbounded) and bounded ...

v Y9 Cited by 155 Related articles All 10 versions

Error estimates for the numerical approximation of Dirichlet boundary control for [PDF] siam.org
semilinear elliptic equations
E Casas, JP Raymond - SIAM Journal on Control and Optimization, 2006 - SIAM

We study the numerical approximation of boundary optimal control problems governed by
semilinear elliptic partial differential equations with pointwise constraints on the control. The
control is the trace of the state on the boundary of the domain, which is assumed to be a ...

v YY Cited by 137 Related articles All 12 versions
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Data driven control

Data-driven control system

From Wikipedia, the free encyclopedia

Data-driven control systems are a broad family of control systems, in which the identification of the process model and/or the design of the controller
are based entirely on experimental data collected from the plant [1].

In many control applications, trying to write a mathematical model of the plant is considered a hard task, requiring efforts and time to the process and
control engineers. This problem is overcome by data-driven methods, which allow to fit a system model to the experimental data collected, choosing it in
a specific models class. The control engineer can then exploit this model to design a proper controller for the system. However, it is still difficult to find a
simple yet reliable model for a physical system, that includes only those dynamics of the system that are of interest for the control specifications. The
direct data-driven methods allow to tune a controller, belonging to a given class, without the need of an identified model of the system. In this way, one
can also simply weight process dynamics of interest inside the control cost function, and exclude those dynamics that are out of interest.
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Origins?

K

Gabriel Peyré

v,

Oldies but goldies: A. Legendre, Nouvelles méthodes
pour la détermination des orbites des cometes, 1805.
First publication of the least square method, before
Gauss according to French people ...
projecteuclid.org/download/pdf_1...

APPENDICE.
Sur la Méthode des moindres quarrés.

Daxs 1a plupart des questions oi il s'agit de lirer des mesures

données par I'observation , les résaltats les plas exacls qu'elles

peuvent offrir, on est presque toujours condail & un systéme

d'équations de la forme .
E=a+bx+cy+ [z + & drien-Marie

dans lesquelles a, 6, ¢, f, &c. sont des coéfficiens connus ,

qui varient d'une équation & l'autre, et x, ¥, 5, &ec. sont des

inconnues qu'il faut délerminer par la condition que la valeur

de E se réduise, poar chaque équation, & une quantilé ou nulle

ou trés-pelite. Least square:

Si l'on a autant d'équations que d'inconnues x, y, =z, &e., g
il 'y a aucune difficulté pour la détermination de ces incon \ ': lni]] ZH ( . Zd w 'l"-\‘ )2
nues, ct on peat rendre les erreurs E absolument nalles. Mais &% eRd+1 =1 Yi k=0 Wk
le plus souvent, lc nombre des équations est supéricur a we '
celui des inconnues, ct il est impossible d'anéantir toutes les
errears.

Dans cetle circonstance , qui est celle de Ja plopart des pro-
blémes physiques et astronomiques, oi l'on cherche & déter-
miner quelques élémens importans, il entre nécessairement de ‘.
P'arbitraire dans la distribution des erreurs , et on ne doit pas B
s'attendre que toutes les hypothéses conduiront exactement aux g 5 °* .
mémes résultats ; mais il faut sur-tout faire en sorte que les O - - 2
erreurs extrémes , sans avoir égard & leurs signes , soient ren- s e® o® ™
fermées dans les limites les plus étroites qu'il est possible. o™ - ¢ e g

De tous les principes qu'on peut proposer pour cet objet,
je pense qu'il n'en est pas de plus général , de plus exact, ni °
d'une application plos facile que celui dont nous avons fait
usage dans les recherches précédentes , et qui consiste & rendre

Legendre

d=10 d=25 d= 50

O O Aug 28, 2019
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Complexity

Y.-Y. Liu and A.-L. Barabasi, Control principles of complex systems, Rev. Modern Physcis, 2016
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Optimal observers design

Given a system
x" = Ax

with x e RV, A € M(N x N), to find the optimal observer B, in a given
class, optimising the observability inequality

.
x(0)]? < C(A, B) /O | Bx|?dt.

In other words,

min C(A, B).

In a series of works in collaboration with Y. Privat and E. Trélat this

problem was addressed in the context of the heat and wave equation.
Ingredients:

m Randomise the class of initial data (N. Burq et al.) and consider the
reduced /simplified problem:

€| < G(A, B)|Be|?
within the class of eigenfunctions

uuuuuuuuuuuuuuuuuuuu
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Partially dissipative hyperbolic systems

m Then address the randomised version of the optimal observer
problem

min C,(A, B).
BeC

m Use the know properties of the eigenfunctions of the Laplacian (in
terms of the shape of the domain under consideration).

m Roughly:

m For heat-like equations optimal observer location is determined by a
finite number of low frequency eigenfunctions.

m For wave-like equations relaxation phenomena may occur.

What about the finite-dimensional problem? How to exploit the structure
of the matrix A and the corresponding nature of eigenvectors? How to
choose the optimal support of the observation matrix B, when it is

simply constituted by O's and 1's




Partially dissipative hyperbolic systems
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Partially dissipative hyperbolic systems

Decay for partially dissipative hyperbolic systems

K. Beauchard and E. Z. Sharp large time asymptotics for partially dissipative hyperbolic systems,
ARMA, 2011.

Ow =~ , Ow . .
E+;Aj%:—ew,xeR weR (1)
A1, ..., Anm B _ 0 O T m XtDX > 0
symmetric -~ \0 D T no vX € R™ — {0}
Goal: Understand the asymptotic behavior as t — 0.

Apply Fourier transform:

OV .
o= = (-B—iA))i  where  A(¢) =) GA
j=1

Lack coercivity : ([B + iA(£)]X, X) = (BX, X) = (DX, Xa) % c|X]?
But possible decay depending on &:

exp[(—B — iA(£))t] < Ce "

7 #erc
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Partially dissipative hyperbolic systems

PARTIALLY DISSIPATIVE LINEAR HYPERBOLIC SYSTEM

m-PARAMETER (&) FAMILY OF FINITE-DIMENSIONAL PARTIALLY
DISSIPATIVE n-DIMENSIONAL SYSTEMS.

The asymptotic behavior of solutions is determined by the behavior of the
function & — A(£) giving the decay rate as a function of &.

Roughly, this is related to the dependence on & of the best constant (&)
such that

< Be,e >> fy(ﬁ’)\e\z

for all eigenvectors
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Consensus model

Collective behavior models

m Describe the dynamics of a system of interacting individuals.

m Applied in a large spectrum of subjects such as collective behavior,
synchronization of coupled oscillators, random networks, multi-area
power grid, opinion propagation,...

Fast Variable (y)
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>
—
o
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Time (ms)

Figure: Fitz-Hugh-Nagumo

oscillators [Davison et al., Figure: Yeast's protein

Allerton 2016] interactions [Jeong et al.,
Nature, 2001]

Figure: French electric

network
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Consensus model

Some basic references on the Dynamics and Control on
networks and graphs

[1] Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence.
Springer-Verlag Berlin Heidelberg.

[2] Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and
cooperation in networked multi-agent systems. |IEEE Proc. 95, 1 (2007),

215-233.

[2] Y.-Y Liu, J.-J. Slotine & A.-L. Barabasi, Controllability of Complex
Networks, Nature, 473, 167-173 (12 May 2011).

[3] T. Vicsek & A. Zafeiris, Collective motion, Physics Reports 517
(2012) 71-140.

[4] S. Motsch & E. Tadmor. Heterophilious dynamics enhances
consensus. SIAM Review 56, 4 (2014), 577-621.

And many others! 2

IM. Caponigro, M. Fornasier, B Piccoli & E. Trélat, M3AS, 2015 ¢ e
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Consensus model

Complex behavior by simple interaction rules

Systems of Ordinary Differential Equations (ODEs) in which each agent'’s
dynamics follows a prescribed law of interactions:

First-order consensus model

() = %Za,,j(xj(t) (), i=1,....N

m |t describes the opinion formation in a group of N individuals.

mx; € R, d > 1, represents the opinion of the i-th agent.

[J. R. P. French, A formal theory of social power, Psychol. Rev.,
1956].

m |t applies in several fields including information spreading of social
networks, distributed decision-making systems or synchronizing
sensor networks, ...

eeeeeeeeeeee
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Consensus model

From random to consensus

Opinion X; Opinion X;
80 T T T T T T T T T 80
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Consensus model

Linear versus Nonlinear

m Linear networked multi-agent models: a; ; are the elements of the
adjacency matrix of a graph with nodes x;

)
3= 4 aji >0, if i jand x;is connected to Xx;
’ 0, otherwise.

\

This leads to the semi-discrete heat equation on the graph.

m Nonlinear alignment models:
ajj = a(|x; — xi|), where a:R; — Ry,

a > 0 is the influence function. The connectivity depends on the
contrast of opinions between individuals.

llllllllllllllllllll
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Two limit models
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Two limit models

Limitation of the mean-field representation

As the number of agents N — oo, ODE — PDE.

m Nonlinear alignment models:
;N
X = NZa(]xj—x,-\)(Xj—x,-), i=1,...,N, a:R;, > R,.
j=1

Classical mean-field theory: Define the N-particle distribution
function?

N
1
= (1) =5 Y ),
=1

and let N — +o00.

3P. A. Raviart, Particle approximation of first order systems, J. Comp. Math., 4 (1)
(1986), 50-61.
By particle methods of approximation of time-dependent problems in PDE, we mean
numerical methods where, for each time t, the exact solution is approximated by a - "
linear combination of Dirac measures... T
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Two limit models

m The limit p of the empirical measures "V solves the the nonlocal
transport equation®

at:u(X7 t)

0 (lx, )V [u(x. £)])
Vil(x, t) = / a(x — y[)(x — y)uly, t)dy.

Rd
The convolution kernel describes the mixing of opinions by the
interaction of agents along time.

m In other words:?

at,u = Ox (M(Xv t)

g a(|x —y)(x = y)uly, t) dy) -

4The system of ODEs describing the agents dynamics defines the characteristics of

the underlying transport equation. The coupling of the agents dynamics introduces
the non-local effects on trasport.

>Motsch and Tadmor, SIAM Rev., 2014 e



Two limit models

The mean field model does not track individuals!

m The mean-field equation involves the density 1, which does not contain
the full information of the state.

m The density 1 does not keep track of the identities of agents (label ).°
Different configurations x; with the same distribution u

xi/ IJB/ mi/ MSJ
1+ X L 1 X 1
1 1
0+ X — 0 X 1 e
0 o
—1 4 X To— —1 X To—

I I || . ) ) I .
1 2 3 t 1 ) 3 ?

Figure: x' = (—1,0,1) (left) and x* = (—2,3, —1) (right) generate the
same density function.

HoAX) = N Zui=1 5Xi



Two limit models

Graph limit method: finite-difference approach

m Based on the theory of graph limits (Medvedev, SIAM J. Math.
Anal., 2014).

m Considering the phase-value function xV(s, t) defined as

xN(s, t) = Zx,-(t)x,,(s, t), se(0,1), t>0, | J=[0,1]

=1

*\
08 - ale/ %
*l \\
: X
0.6 |- ;’ N
) *\
05 I ¥
L * \¥\
*
% * N * Sk
% Ky *
W
01 r
00 ‘2 ll E; EIB 1‘0 1‘2 1I4 1‘6 1I8 20 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Index i
Figure: Opinion (N = 20) and its finite-difference function z*° on [0, 1]
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Two limit models

m Let (x"V)V, be the solution of the following consensus model:
;N
N N N N
Xi = N Zai,jw(xj — X )7
Jj=1
where aNJ are constant and v represents nonlinearity.

m According to the graph limit theory’, if

(s, s«) Z a,J [/(/a('“))( )1[_- (j—|—1))(5*)

N’ N
1,j=1

is uniformly bounded and converges to W, then in the limit N — o
we get the non-local diffusive equation,

Orx(s, t) = - W (s, s.)p(x(s«, t) — x(s, t))ds,.

’G. S. Medvedev. SIAM J. Math. Anal. 46, 4 (2014), 2743-2766. el B



Two limit models

Nonlinear subordination
U. Biccari, D. Ko & E. Z., M3AS, 2019.

m [he Graph limit model:
Xt (s, t) :/ a(|x(ss, t) — x(s, t)[)(x(ss, t) — x(s, t))ds..
[0,1]

m | he mean-field limit:

we(x, t)+Vy(V]plp) =0, where V]u] := /Xa(x*—x),u(x*, t)dx,.

Subordination transformation

From non-local "parabolic" to non-local "hyperbolic":
u(x, t) = [56(x — x(s, t))ds.

8 4 erc
8Kinetic / conservation laws: Lions-Perthame-Tadmor, JAMS, 1994
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Control of collective dynamics
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Control of collective dynamics

Control (N fixed)

m Linear: Classical Kalman rank conditions.
m Nonlinear: controllability and stabilisability is a much more subtle

issue ? is much more challenging

x(t) =L N M b =1,...,N

JX(8) = gy 2 @i ((t) = xi(t)) + 25 bijui(t), i=1,...N,
x(0) = xo,

\

m [ he linear model can be viewed as the linearisation of the nonlinear
one on the consensus configuration.

Many different issues arise:

m by acting on all the components of the system (certainly effective
but not always optimal).

m by focusing only on a small number of agents at each time (sparse
control).

m by looking for a single leader who acts on the whole crowd and
steers it to the desired configuration (control through leadership).
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Control of collective dynamics

Linear networks as finite-dim. approximations of PDEs

1, ifj=i+1
dj j = .
\O, otherwise
X1 1 -1 0 ... ... 0\ [x) 0
(*2\ /—1 > 1 ... .. 0\ /Xz /0
1 -
+ =

o ... ... =1 2

\XN) SN0 _11)J \XEN) \(;/

N

L

Rescaled version of the finite-difference approximations of the heat
equation!
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Control of collective dynamics

The system is a rescaled version of the finite difference
semi-discretization of the one-dimensional heat equation with
homogeneous Neumann boundary conditions on [0, 1].

I A T e 1)

2 -1 0
; o . .12 all| |
/) \0 .. e 1)\ \o

The only difference is in the scale with respect to N.
The network system corresponds to the finite-difference discretisation of
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Control of collective dynamics

Controllability cost

Acting locally in one individual to achieve a global goal

m The cost of controlling the system depends in T and N so that
C ~ exp(N>/T).

m One may keep it bounded by setting
T ~ N°.

m Developing a complete theory of controllability for linear discrete
models as N — oo is a very challenging topic.

m The existing theory for the null-control of semi-discrete versions of
the heat equation is rather limited, based on spectral analysis (very
particular cases) or in Carleman inequalities and/or multiplier
identities for wave equations plus transmutation arguments. And the

later ones led to high frequency numerical reminder terms. 10 11 12
10Nonlinear versions developed in collaboration with Domenec Ruiz
11E 7., Proceedings of the ICM Madrid ,2006. _—
12F Boyer &J. LeRousseau, Ann. |.H. Poincaré — AN, 31(2014)1035 — 1078. =




Control of collective dynamics

The fractional heat equation

The same analysis can be carried out for other discrete systems, leading,
in particular, to fractional heat equations

up + (—02)*u=0, t>0,

T (u(x) — u
(—5’5)0‘:c(a)P.V./ ( ( ) (y))dy

x — y[it2e

— OO

This is an example of the all-to-all networked models. The spectrum

APee g2 k> 1.

Null-controllability conditions hold if and only if & > 1/2.

This corresponds to the following weighted all-to-all networked model: 13
14

c(a) L
=g/

13S. Micu & E. Z. SIAM J. Cont. Optim., 44(6) (2006) 1950-1972.
14, Biccari, V. Hernandez-Santamaria. Controllability of a one-dimensional |
fractional heat eairmation: thearetical and nitimerical aecnecte 2017 <hal-OT1TRAEIORRQVO S

dij =
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Control of collective dynamics

Merci Jean-Pierre, pour ton amitit ta collaboration loyale.
Et trbonne continuation!
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