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Complexity

Y.-Y. Liu and A.-L. Barabási, Control principles of complex systems, Rev. Modern Physcis, 2016
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Given a system
x 0 = Ax

with x 2 RN , A 2 M(N ⇥ N), to find the optimal observer B , in a given
class, optimising the observability inequality

|x(0)|2  C (A,B)

Z T

0

|Bx |2dt.

In other words,
min
B2C

C (A,B).

In a series of works in collaboration with Y. Privat and E. Trélat this
problem was addressed in the context of the heat and wave equation.
Ingredients:

Randomise the class of initial data (N. Burq et al.) and consider the
reduced/simplified problem:

|e|2  Cr (A,B)|Be|2

within the class of eigenfunctions

Ae = �e.
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Then address the randomised version of the optimal observer
problem

min
B2C

Cr (A,B).

Use the know properties of the eigenfunctions of the Laplacian (in
terms of the shape of the domain under consideration).

Roughly:

For heat-like equations optimal observer location is determined by a

finite number of low frequency eigenfunctions.

For wave-like equations relaxation phenomena may occur.

What about the finite-dimensional problem? How to exploit the structure
of the matrix A and the corresponding nature of eigenvectors? How to
choose the optimal support of the observation matrix B , when it is
simply constituted by 0’s and 1’s
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Decay for partially dissipative hyperbolic systems
K. Beauchard and E. Z. Sharp large time asymptotics for partially dissipative hyperbolic systems,
ARMA, 2011.

@w

@t
+

mX

j=1

Aj
@w

@xj
= �Bw , x 2 Rm , w 2 Rn (1)

A1, ...,Am

symmetric B =

✓
0 0
0 D

◆
l n1

l n2

X tDX > 0
8X 2 Rn2 � {0}

Goal: Understand the asymptotic behavior as t ! 1.
Apply Fourier transform:

@ŵ

@t
= (�B � iA(⇠))ŵ where A(⇠) :=

mX

j=1

⇠jAj

Lack coercivity : h[B + iA(⇠)]X ,X i = hBX ,X i = hDX2,X2i ↵ c |X |2
But possible decay depending on ⇠:

exp[(�B � iA(⇠))t] 6 Ce��(⇠)t
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PARTIALLY DISSIPATIVE LINEAR HYPERBOLIC SYSTEM
⌘

m-PARAMETER (⇠) FAMILY OF FINITE-DIMENSIONAL PARTIALLY
DISSIPATIVE n-DIMENSIONAL SYSTEMS.

The asymptotic behavior of solutions is determined by the behavior of the
function ⇠ ! �(⇠) giving the decay rate as a function of ⇠.

Roughly, this is related to the dependence on ⇠ of the best constant �(⇠)
such that

< Be, e >� �(⇠)|e|2

for all eigenvectors
A(⇠)e = µ(⇠)e.
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Collective behavior models

Describe the dynamics of a system of interacting individuals.
Applied in a large spectrum of subjects such as collective behavior,
synchronization of coupled oscillators, random networks, multi-area
power grid, opinion propagation,...

Figure: Fitz-Hugh-Nagumo

oscillators [Davison et al.,

Allerton 2016]

Figure: Yeast’s protein

interactions [Jeong et al.,

Nature, 2001]

Figure: French electric

network
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Some basic references on the Dynamics and Control on

networks and graphs

[1] Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence.
Springer-Verlag Berlin Heidelberg.
[2] Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and
cooperation in networked multi-agent systems. IEEE Proc. 95, 1 (2007),
215–233.
[2] Y.-Y Liu, J.-J. Slotine & A.-L. Barabási, Controllability of Complex
Networks, Nature, 473, 167–173 (12 May 2011).
[3] T. Vicsek & A. Zafeiris, Collective motion, Physics Reports 517
(2012) 71–140.
[4] S. Motsch & E. Tadmor. Heterophilious dynamics enhances
consensus. SIAM Review 56, 4 (2014), 577–621.
...
And many others1 2

1M. Caponigro, M. Fornasier, B Piccoli & E. Trélat, M3AS, 2015
2M. Burger, R. Pinnau, A. Roth, C. Totzeck & O. Tse, arXiv 2016.
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Complex behavior by simple interaction rules

Systems of Ordinary Differential Equations (ODEs) in which each agent’s
dynamics follows a prescribed law of interactions:

First-order consensus model

ẋi (t) =
1
N

NX

j=1

ai,j(xj(t)� xi (t)), i = 1, . . . ,N

It describes the opinion formation in a group of N individuals.
xi 2 Rd , d � 1, represents the opinion of the i-th agent.

[J. R. P. French, A formal theory of social power, Psychol. Rev.,
1956].
It applies in several fields including information spreading of social
networks, distributed decision-making systems or synchronizing
sensor networks, ...
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From random to consensus

Figure: Opinions over a network : random versus consensus states
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Linear versus Nonlinear

Linear networked multi-agent models: ai,j are the elements of the
adjacency matrix of a graph with nodes xi

ai,j :=

(
aj,i > 0, if i 6= j and xi is connected to xj
0, otherwise.

This leads to the semi-discrete heat equation on the graph.

Nonlinear alignment models:

ai,j := a(|xj � xi |), where a : R+ ! R+,

a � 0 is the influence function. The connectivity depends on the
contrast of opinions between individuals.
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Limitation of the mean-field representation

As the number of agents N ! 1, ODE ! PDE.
Nonlinear alignment models:

ẋi =
1
N

NX

j=1

a(|xj � xi |)(xj � xi ), i = 1, . . . ,N, a : R+ ! R+.

Classical mean-field theory: Define the N-particle distribution
function3

µN = µN(x , t) :=
1
N

NX

i=1

�xi (t).

and let N ! +1.
3P. A. Raviart, Particle approximation of first order systems, J. Comp. Math., 4 (1)

(1986), 50-61.
By particle methods of approximation of time-dependent problems in PDE, we mean
numerical methods where, for each time t, the exact solution is approximated by a
linear combination of Dirac measures...

19 / 31



JPR Optimal observers design Partially dissipative hyperbolic systems Consensus model Two limit models Control of collective dynamics

The limit µ of the empirical measures µN solves the the nonlocal
transport equation4

@tµ(x , t) = @x
⇣
µ(x , t)V [µ(x , t)]

⌘

V [µ](x , t) :=

Z

Rd

a(|x � y |)(x � y)µ(y , t)dy .

The convolution kernel describes the mixing of opinions by the
interaction of agents along time.
In other words:5

@tµ = @x

✓
µ(x , t)

Z

Rd

a(|x � y |)(x � y)µ(y , t) dy

◆
.

4The system of ODEs describing the agents dynamics defines the characteristics of
the underlying transport equation. The coupling of the agents dynamics introduces
the non-local effects on trasport.

5Motsch and Tadmor, SIAM Rev., 2014
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The mean field model does not track individuals!

The mean-field equation involves the density µ, which does not contain

the full information of the state.

The density µ does not keep track of the identities of agents (label i).6

Different configurations xi with the same distribution µ

Figure: x1 = (�1, 0, 1) (left) and x2 = (�2, 3,�1) (right) generate the

same density function.

6µN(x) := 1
N

PN
i=1 �xi
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Graph limit method: finite-difference approach

Based on the theory of graph limits (Medvedev, SIAM J. Math.
Anal., 2014).
Considering the phase-value function xN(s, t) defined as

xN(s, t) =
NX

i=1

xi (t)�Ii (s, t), s 2 (0, 1), t > 0,
N[

i=1

Ii = [0, 1].

Figure: Opinion (N = 20) and its finite-difference function z20
on [0, 1]
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Let (xNi )Ni=1
be the solution of the following consensus model:

ẋNi =
1
N

NX

j=1

aNi,j (x
N
j � xNi ),

where aNi,j are constant and  represents nonlinearity.

According to the graph limit theory7, if

W N(s, s⇤) =
NX

i,j=1

aNi,j1[ i
N , (i+1)

N )
(s)1

[ j
N , (j+1)

N )
(s⇤)

is uniformly bounded and converges to W , then in the limit N ! 1
we get the non-local diffusive equation,

@tx(s, t) =

Z

[0,1]
W (s, s⇤) (x(s⇤, t)� x(s, t))ds⇤.

7G. S. Medvedev. SIAM J. Math. Anal. 46, 4 (2014), 2743–2766.
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Nonlinear subordination

U. Biccari, D. Ko & E. Z., M3AS, 2019.

ẋi =
1
N

NX

j=1

a(|xj � xi |)(xj � xi ).

The Graph limit model:

xt(s, t) =

Z

[0,1]
a(|x(s⇤, t)� x(s, t)|)(x(s⇤, t)� x(s, t))ds⇤.

The mean-field limit:

µt(x , t)+rx(V [µ]µ) = 0, where V [µ] :=

Z

X
a(x⇤�x)µ(x⇤, t)dx⇤.

Subordination transformation
From non-local "parabolic" to non-local "hyperbolic":
µ(x , t) =

R
S �(x � x(s, t))ds.

8

8Kinetic / conservation laws: Lions-Perthame-Tadmor, JAMS, 1994
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Control (N fixed)

Linear: Classical Kalman rank conditions.
Nonlinear: controllability and stabilisability is a much more subtle
issue 9 is much more challenging
(
ẋ(t) = 1

N

PN
j=1

ai,j(xj(t)� xi (t)) +
PM

j=1
bi,juj(t), i = 1, . . . ,N,

x(0) = x0,

The linear model can be viewed as the linearisation of the nonlinear
one on the consensus configuration.

Many different issues arise:
by acting on all the components of the system (certainly effective
but not always optimal).
by focusing only on a small number of agents at each time (sparse
control).
by looking for a single leader who acts on the whole crowd and
steers it to the desired configuration (control through leadership).

9Caponigro, Fornasier, Piccoli, and Trélat, Math. Models Methods Appl. Sci., 2015
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Linear networks as finite-dim. approximations of PDEs

ai,j =

(
1, if j = i ± 1
0, otherwise

0

BBBBBBBBB@

ẋ1

ẋ2

...

...

...
ẋN

1

CCCCCCCCCA

+
1
N

0

BBBBBBBB@

1 �1 0 . . . . . . 0
�1 2 �1 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . �1 2 �1
0 . . . . . . . . . �1 1

1

CCCCCCCCA

| {z }
L

0

BBBBBBBBB@

x1

x2

...

...

...
xN

1

CCCCCCCCCA

=

0

BBBBBBBBB@

0
0
...
...
...
0

1

CCCCCCCCCA

.

Rescaled version of the finite-difference approximations of the heat
equation!
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The system is a rescaled version of the finite difference
semi-discretization of the one-dimensional heat equation with
homogeneous Neumann boundary conditions on [0, 1].

0

BBBBBBBBB@

ẋ1

ẋ2

...

...

...
ẋN

1

CCCCCCCCCA

+ N2

0

BBBBBBBB@

1 �1 0 . . . . . . 0
�1 2 �1 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . �1 2 �1
0 . . . . . . . . . �1 1

1

CCCCCCCCA

| {z }
D

0

BBBBBBBBB@

x1

x2

...

...

...
xN

1

CCCCCCCCCA

=

0

BBBBBBBBB@

0
0
...
...
...
0

1

CCCCCCCCCA

.

The only difference is in the scale with respect to N.
The network system corresponds to the finite-difference discretisation of

ut � N�3uxx = 0.
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Controllability cost

Acting locally in one individual to achieve a global goal

The cost of controlling the system depends in T and N so that

C ⇠ exp(N3/T ).

One may keep it bounded by setting

T ⇠ N3.

Developing a complete theory of controllability for linear discrete
models as N ! 1 is a very challenging topic.
The existing theory for the null-control of semi-discrete versions of
the heat equation is rather limited, based on spectral analysis (very
particular cases) or in Carleman inequalities and/or multiplier
identities for wave equations plus transmutation arguments. And the
later ones led to high frequency numerical reminder terms. 10 11 12

10Nonlinear versions developed in collaboration with Domenec Ruiz
11E. Z., Proceedings of the ICM Madrid ,2006.
12F. Boyer &J. LeRousseau, Ann. I.H. Poincaré – AN, 31(2014)1035 – 1078.
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The fractional heat equation

The same analysis can be carried out for other discrete systems, leading,
in particular, to fractional heat equations

ut + (�@2

x )
↵u = 0, t � 0,

(�@2

x )
↵ = c(↵)P .V .

Z +1

�1

(u(x)� u(y))

|x � y |1+2↵
dy

This is an example of the all-to-all networked models. The spectrum

�frac,↵
k ⇠ k2↵, k � 1.

Null-controllability conditions hold if and only if ↵ > 1/2.

This corresponds to the following weighted all-to-all networked model: 13

14

ai,j =
c(↵)

[|i � j |/N|]1+2↵
,if j 6= i .

13S. Micu & E. Z. SIAM J. Cont. Optim., 44(6) (2006) 1950-1972.
14U. Biccari, V. Hernández-Santamaria. Controllability of a one-dimensional

fractional heat equation: theoretical and numerical aspects. 2017. <hal-01562358v2> 30 / 31
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Merci Jean-Pierre, pour ton amitit ta collaboration loyale.

Et trbonne continuation!
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